Adaptive Sampling with Adaptive Surrogate Model Selection for Computer Experiment Applications

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  D. Wolpert The Supervised Learning No-Free-Lunch Theorems , 2002 .

[3]  David M. Steinberg,et al.  Modeling Data from Computer Experiments: An Empirical Comparison of Kriging with MARS and Projection Pursuit Regression , 2007 .

[4]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[5]  William I. Notz,et al.  Sequential adaptive designs in computer experiments for response surface model fit , 2008 .

[6]  A. Messac,et al.  Predictive quantification of surrogate model fidelity based on modal variations with sample density , 2015 .

[7]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[8]  Ruichen Jin,et al.  On Sequential Sampling for Global Metamodeling in Engineering Design , 2002, DAC 2002.

[9]  Victor Picheny,et al.  Using Cross Validation to Design Conservative Surrogates , 2010 .

[10]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[11]  Ying Ma,et al.  An Adaptive Bayesian Sequential Sampling Approach for Global Metamodeling , 2016 .

[12]  T. Simpson,et al.  Computationally Inexpensive Metamodel Assessment Strategies , 2002 .

[13]  R. Haftka,et al.  Ensemble of surrogates , 2007 .

[14]  Alex A. Gorodetsky,et al.  Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation , 2015, SIAM/ASA J. Uncertain. Quantification.

[15]  Jerome Sacks,et al.  Choosing the Sample Size of a Computer Experiment: A Practical Guide , 2009, Technometrics.

[16]  Pietro Marco Congedo,et al.  A Kriging-PDD surrogate model for low-cost sensitivity analysis , 2016 .

[17]  R. Haftka,et al.  Multiple surrogates: how cross-validation errors can help us to obtain the best predictor , 2009 .

[18]  Raphael T. Hafkta,et al.  Comparing error estimation measures for polynomial and kriging approximation of noise-free functions , 2009 .

[19]  Dirk Gorissen,et al.  Automatic Approximation of Expensive Functions with Active Learning , 2009, Foundations of Computational Intelligence.

[20]  A. Owen Controlling correlations in latin hypercube samples , 1994 .

[21]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[22]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[23]  Dirk Gorissen,et al.  Sequential modeling of a low noise amplifier with neural networks and active learning , 2009, Neural Computing and Applications.

[24]  Jack P. C. Kleijnen,et al.  Application-driven sequential designs for simulation experiments: Kriging metamodelling , 2004, J. Oper. Res. Soc..

[25]  Dirk Gorissen,et al.  A Novel Hybrid Sequential Design Strategy for Global Surrogate Modeling of Computer Experiments , 2011, SIAM J. Sci. Comput..

[26]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[27]  Daniel M. Dunlavy,et al.  Formulations for Surrogate-Based Optimization with Data Fit, Multifidelity, and Reduced-Order Models , 2006 .

[28]  Hui Zhou,et al.  An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling , 2016 .

[29]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments , 2001 .

[30]  G. Matheron Principles of geostatistics , 1963 .

[31]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[32]  Julien Jacques,et al.  Sensitivity analysis in presence of model uncertainty and correlated inputs , 2006, Reliab. Eng. Syst. Saf..

[33]  Daniel W. Apley,et al.  Fractional Brownian Fields for Response Surface Metamodeling , 2014 .

[34]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .