Transformation between Cartesian and pure spherical harmonic Gaussians

Spherical Gaussians can be expressed as linear combinations of the appropriate Cartesian Gaussians. General expressions for the transformation coefficients are given. Values for the transformation coefficients are tabulated up to h-type functions. © 1995 John Wiley & Sons, Inc.

[1]  M. Krauss Gaussian wave functions for polyatomic molecules: integral formulas , 1964 .

[2]  S. Huzinaga,et al.  Gaussian-Expansion Methods for Molecular Integrals , 1966 .

[3]  Talmi transformation and the multicenter integrals of harmonic oscillator functions , 1979 .

[4]  F. Harris Gaussian Wave Functions for Polyatomic Molecules , 1963 .

[5]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[6]  Martin Head-Gordon,et al.  A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .

[7]  I. Shavitt The History and Evolution of Gaussian Basis Sets , 1993 .

[8]  L. C. Chiu,et al.  Translational and rotational expansion of spherical Gaussian wave functions for multicenter molecular integrals , 1994 .

[9]  A. R. Edmonds Angular Momentum in Quantum Mechanics , 1957 .

[10]  Peter M. W. Gill,et al.  The prism algorithm for two-electron integrals , 1991 .

[11]  G. Fieck Racah algebra and Talmi transformation in the theory of multi-centre integrals of Gaussian orbitals , 1979 .

[12]  Henry F. Schaefer,et al.  New variations in two-electron integral evaluation in the context of direct SCF procedures , 1991 .

[13]  O. Matsuoka Molecular integrals over spherical Laguerre Gaussian‐type functions , 1990 .

[14]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[15]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .