Imaging Optical Frequencies with 100  μHz Precision and 1.1  μm Resolution.

We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5×10^{-19}. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.

[1]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[2]  Jean-Claude Tarby :I'M , 2013, Universal Algebra and Applications in Theoretical Computer Science.

[3]  E. Burt,et al.  Lattice-induced frequency shifts in Sr optical lattice clocks at the 10(-17) level. , 2011, Physical review letters.

[4]  J. Cirac,et al.  High-temperature superfluidity of fermionic atoms in optical lattices. , 2002, Physical review letters.

[5]  S. Folling,et al.  Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions , 2014, Nature Physics.

[6]  J. Lodewyck,et al.  Polarizabilities of the 87 Sr clock transition , 2015, 1503.09167.

[7]  A. Rey,et al.  Mott insulators of ultracold fermionic alkaline Earth atoms: underconstrained magnetism and chiral spin liquid. , 2009, Physical review letters.

[8]  Jakob Reichel,et al.  Enhanced and reduced atom number fluctuations in a BEC splitter. , 2010, Physical review letters.

[9]  Jun Ye,et al.  Optical spectrum analyzer with quantum-limited noise floor. , 2013, Physical review letters.

[10]  M. Kasevich,et al.  Method of phase extraction between coupled atom interferometers using ellipse-specific fitting. , 2002, Optics letters.

[11]  D. Stamper-Kurn,et al.  Coherent magnon optics in a ferromagnetic spinor Bose-Einstein condensate. , 2014, Physical review letters.

[12]  P. Zoller,et al.  Observation of chiral edge states with neutral fermions in synthetic Hall ribbons , 2015, Science.

[13]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[14]  P. Zoller,et al.  Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms , 2009, 0905.2610.

[15]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[16]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[17]  H. Ritsch,et al.  Optimized geometries for future generation optical lattice clocks , 2015, 1506.09079.

[18]  P. Zoller,et al.  Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism , 2014, Science.

[19]  I. Bloch,et al.  Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions. , 2017, Physical review letters.

[20]  L. Livi,et al.  Direct observation of coherent interorbital spin-exchange dynamics. , 2014, Physical review letters.

[21]  Rupert G. Miller The jackknife-a review , 1974 .

[22]  D. Hume,et al.  Optimized absorption imaging of mesoscopic atomic clouds , 2013 .

[23]  Jun Ye,et al.  Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock , 2009, 0906.1419.

[24]  A. Rey,et al.  Probing the Kondo lattice model with alkaline-earth-metal atoms , 2009, 0912.4762.

[25]  Zach DeVito,et al.  Opt , 2017 .

[26]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[27]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[28]  S. Tung,et al.  Extracting density–density correlations from in situ images of atomic quantum gases , 2011, 1105.0030.

[29]  I. Bloch,et al.  Observation of an Orbital Interaction-Induced Feshbach Resonance in (173)Yb. , 2015, Physical review letters.

[30]  d-Wave resonating valence bond states of fermionic atoms in optical lattices. , 2005, Physical review letters.

[31]  Gaetano Mileti,et al.  Imaging of Relaxation Times and Microwave Field Strength in a Microfabricated Vapor Cell , 2013, 1306.1387.

[32]  Fabio Costa,et al.  Quantum interferometric visibility as a witness of general relativistic proper time , 2011, Nature communications.

[33]  John K. Stockton,et al.  Bayesian estimation of differential interferometer phase , 2007 .

[34]  Philipp Treutlein,et al.  Imaging of microwave fields using ultracold atoms , 2010, 1009.4651.

[35]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[36]  M. Lukin,et al.  Controlled preparation and detection of d-wave superfluidity in two-dimensional optical superlattices , 2008, 0806.0166.

[37]  M. Lukin,et al.  Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock , 2003, quant-ph/0308068.

[38]  D. Stamper-Kurn,et al.  High-resolution magnetometry with a spinor Bose-Einstein condensate. , 2007, Physical review letters.

[39]  M. Schioppo,et al.  Ultrastable optical clock with two cold-atom ensembles , 2016, Nature Photonics.

[40]  T. Fortier,et al.  Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock. , 2017, Physical review letters.

[41]  M. Bishof,et al.  A Quantum Many-Body Spin System in an Optical Lattice Clock , 2012, Science.

[42]  M. L. Wall,et al.  Spin–orbit-coupled fermions in an optical lattice clock , 2016, Nature.

[43]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[44]  Andrew G. Glen,et al.  APPL , 2001 .

[45]  A. Landragin,et al.  In situ characterization of an optical cavity using atomic light shift. , 2010, Optics letters.

[46]  D. Guéry-Odelin,et al.  Strong saturation absorption imaging of dense clouds of ultracold atoms. , 2007, Optics letters.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.