Reversible fourier transform chip

A reversible MOS chip, performing an 8-point 8-bit fast Fourier transform has been designed in a standard 0.35 μm c-MOS technology. Special attention has been paid not to let the number of garbage bits proliferate. As much as possible, garbage bits are either avoided or converted into garbage zeroes and then recycled.

[1]  Robert Glück,et al.  Principles of a reversible programming language , 2008, CF '08.

[2]  Jin Li Reversible FFT and MDCT via matrix lifting , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[3]  Alexis De Vos,et al.  Reversible full adders applying Fredkin gates , 2005 .

[4]  Alexis De Vos Fundamental limits of power dissipation in digital electronics. , 1999 .

[5]  O. Buneman,et al.  Inversion of the Helmholtz (or Laplace--Poisson) operator for slab geometry , 1973 .

[6]  Linda M. Wills,et al.  Reverse Engineering , 1996, Springer US.

[7]  Truong Q. Nguyen,et al.  Integer fast Fourier transform , 2002, IEEE Trans. Signal Process..

[8]  Alexis De Vos,et al.  Designing a reversible chip , 2003 .

[9]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[10]  Kathryn A. Ingle,et al.  Reverse Engineering , 1996, Springer US.

[11]  P. Kerntopf,et al.  Synteza odwracalnych układów logicznych , 2007 .

[12]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[13]  Alexis De Vos,et al.  Optimizing reversible chips , 2003 .

[14]  Frederic T. Chong,et al.  A Realizable Distributed Ion-Trap Quantum Computer , 2006, HiPC.

[15]  Guowu Yang,et al.  Majority-based reversible logic gates , 2005, Theor. Comput. Sci..

[16]  Alexis De Vos,et al.  Optimal Design of a Reversible Full Adder , 2005, Int. J. Unconv. Comput..

[17]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[18]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  Igor L. Markov An Introduction to Reversible Circuits , .