A Decision Procedure for the Alternation-Free Two-Way Modal µ-Calculus

The satisfiability checking problem is known to be decidable for a variety of modal/temporal logics such as the modal μ-calculus, but effective implementation has not necessarily been developed for all such logics. In this paper, we propose a decision procedure using the tableau method for the alternation-free two-way modal μ-calculus. Although the size of the tableau set maintained in the method might be large for complex formulas, the set and the operations on it can be expressed using BDD and therefore we can implement the method in an effective way.

[1]  Pierre Wolper,et al.  Synthesis of Communicating Processes from Temporal Logic Specifications , 1981, TOPL.

[2]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[3]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[4]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[5]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[6]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[7]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[8]  I. Walukiewicz Games for the -calculus , 2007 .

[9]  Nils Klarlund,et al.  Mona: Monadic Second-Order Logic in Practice , 1995, TACAS.

[10]  Sriram K. Rajamani,et al.  Automatically validating temporal safety properties of interfaces , 2001, SPIN '01.

[11]  Andrei Voronkov,et al.  Automated Deduction—CADE-18 , 2002, Lecture Notes in Computer Science.

[12]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[13]  Masami Hagiya,et al.  Analysis of Synchronous and Asynchronous Cellular Automata Using Abstraction by Temporal Logic , 2004, FLOPS.

[14]  Ulrike Sattler,et al.  BDD-Based Decision Procedures for K , 2002, CADE.

[15]  David Janin Automata, logics, and infinite games: A guide to current research, edited by Erich Grädel, Wolfgang Thomas, and Thomas Wilke, Lecture Notes in Computer Science, vol. 2500 (Tutorial). Springer-Verlag, Berlin Heidelberg, 2002, viii + 385 pp. , 2004, Bulletin of Symbolic Logic.

[16]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[17]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[18]  Moshe Y. Vardi,et al.  Optimizing a BDD-Based Modal Solver , 2003, CADE.

[19]  Jacques D. Fleuriot,et al.  IsaPlanner: A Prototype Proof Planner in Isabelle , 2003, CADE.

[20]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[21]  Igor Walukiewicz,et al.  Games for the mu-Calculus , 1996, Theor. Comput. Sci..

[22]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[23]  Thomas A. Henzinger,et al.  Lazy abstraction , 2002, POPL '02.

[24]  Erich Grädel,et al.  Guarded fixed point logics and the monadic theory of countable trees , 2002, Theor. Comput. Sci..

[25]  Masami Hagiya,et al.  Abstraction of Graph Transformation Systems by Temporal Logic and Its Verification , 2005, VSTTE.