Lin's method and homoclinic bifurcations for functional differential equations of mixed type

We extend Lin’s method for use in the setting of parameter-dependent nonlinear functional dierential equations of mixed type (MFDEs). We show that the presence of M-homoclinic and M-periodic solutions that bifurcate from a prescribed homoclinic connection can be detected by studying a nite dimensional bifurcation equation. As an application, we describe the codimension two orbit-ip bifurcation in the setting of MFDEs.

[1]  L. P. Šil'nikov,et al.  ON THE GENERATION OF A PERIODIC MOTION FROM TRAJECTORIES DOUBLY ASYMPTOTIC TO AN EQUILIBRIUM STATE OF SADDLE TYPE , 1968 .

[2]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[3]  Eiji Yanagida,et al.  Branching of double pulse solutions from single pulse solutions in nerve axon equations , 1987 .

[4]  S. Chow,et al.  Bifurcation of a unique stable periodic orbit from a homoclinic orbit in infinite-dimensional systems , 1989 .

[5]  Xiao-Biao Lin,et al.  Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  Hiroshi Kokubu,et al.  Bifurcations toN-homoclinic orbits andN-periodic orbits in vector fields , 1993 .

[7]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[8]  Martin Krupa,et al.  The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit , 1994, Ergodic Theory and Dynamical Systems.

[9]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[10]  John Mallet-Paret,et al.  The Fredholm Alternative for Functional Differential Equations of Mixed Type , 1999 .

[11]  John Mallet-Paret,et al.  Exponential Dichotomies and Wiener-Hopf Factorizations for Mixed-Type Functional Differential Equations , 2001 .

[12]  Björn Sandstede,et al.  Exponential dichotomies for linear non-autonomous functional differential equations of mixed type , 2002 .

[13]  S. M. Verduyn Lunel,et al.  Center Manifold Theory for Functional Differential Equations of Mixed Type , 2007 .

[14]  Hermen Jan Hupkes,et al.  Invariant manifolds and applications for functional differential equations of mixed type , 2008 .

[15]  S. Lunel,et al.  Center projections for smooth difference equations of mixed type , 2008 .

[16]  S. Lunel,et al.  Center manifolds for periodic functional differential equations of mixed type , 2008 .

[17]  M. Georgi Bifurcations from homoclinic orbits to non-hyperbolic equilibria in reversible lattice differential equations , 2008 .