On constructing a dielectric function for cesium lead halide perovskites

The potential applications of cesium lead halide perovskites are widespread and are based on their unique dielectric response properties. It follows that for modeling the dielectric response of these materials, construction of a dielectric response function that is formulated for quantitative representation of underlying physical processes is required for the simulation of their performance as detectors, emitters or photocathodes. The present study examines physical characteristics of the dielectric response of cesium lead halide perovskites that provide a foundation for formulating quantitative dielectric response functions.

[1]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[2]  W. Wiegmann,et al.  Low-temperature absorption spectrum in GaAs in the presence of optical pumping , 1977 .

[3]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[4]  S. Adachi,et al.  Optical properties of CdTe: Experiment and modeling , 1993 .

[5]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[6]  Georg Kresse,et al.  Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization , 2015 .

[7]  Iftikhar Ahmad,et al.  First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M¼Cl, Br, I) , 2011 .

[8]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[9]  M. Schreiber,et al.  Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPb Cl 3 and CsPb Br 3 , 1981 .

[10]  Yingfang Yao,et al.  An all-inorganic lead halide perovskite-based photocathode for stable water reduction. , 2018, Chemical communications.

[11]  S. Rabii,et al.  Exact derivative interband dielectric function at Van Hove singularities , 1973 .

[12]  Sadao Adachi,et al.  Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design , 1982 .

[13]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[14]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[15]  C. H. Park,et al.  First-Principles Study of the Structural and the Electronic Properties of the Lead-Halide-Based Inorganic-Organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I) , 2004 .

[16]  K. Kreher,et al.  Fundamentals of Semiconductors – Physics and Materials Properties , 1997 .

[17]  L. Hove,et al.  The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal , 1953 .

[18]  Kim,et al.  Modeling the optical dielectric function of semiconductors: Extension of the critical-point parabolic-band approximation. , 1992, Physical review. B, Condensed matter.

[19]  Georg Kresse,et al.  Self-Consistent $GW$ calculations for semiconductors and insulators , 2018 .

[20]  Tze Chien Sum,et al.  High‐Quality Whispering‐Gallery‐Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets , 2016 .

[21]  B. Potapkin,et al.  Minimizing light reflection from dielectric textured surfaces. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[23]  S. Tretiak,et al.  Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites , 2017, Science.

[24]  M. Cardona,et al.  Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.

[25]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[26]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[27]  H. Ehrenreich,et al.  Optical Properties of Ag and Cu , 1962 .

[28]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[29]  Ayan A. Zhumekenov,et al.  All-inorganic perovskite nanocrystal scintillators , 2018, Nature.

[30]  Anirban Dutta,et al.  Phase-Stable CsPbI3 Nanocrystals: The Reaction Temperature Matters. , 2018, Angewandte Chemie.

[31]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[32]  J. Michopoulos,et al.  Bright triplet excitons in caesium lead halide perovskites , 2017, Nature.

[33]  B. Jensen Quantum theory of free carrier absorption in polar semiconductors , 1973 .

[34]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[35]  Yuri S. Kivshar,et al.  Light-Emitting Halide Perovskite Nanoantennas. , 2018, Nano letters.

[36]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[37]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[38]  Kim,et al.  Modeling the optical dielectric function of the alloy system AlxGa1-xAs. , 1993, Physical review. B, Condensed matter.

[39]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  T. Watson,et al.  Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water , 2019, Nature Communications.

[42]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[43]  Taguchi,et al.  Optical properties of ZnSe. , 1991, Physical review. B, Condensed matter.

[44]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[45]  G. Kresse,et al.  Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. , 2007, Physical review letters.

[46]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[47]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[48]  B. Jensen Quantum theory of the complex dielectric constant of free carriers in polar semiconductors , 1982 .

[49]  Rakic,et al.  Acceptance-probability-controlled simulated annealing: A method for modeling the optical constants of solids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.