Localization of the maximal entropy random walk.

We define a new class of random walk processes which maximize entropy. This maximal entropy random walk is equivalent to generic random walk if it takes place on a regular lattice, but it is not if the underlying lattice is irregular. In particular, we consider a lattice with weak dilution. We show that the stationary probability of finding a particle performing maximal entropy random walk localizes in the largest nearly spherical region of the lattice which is free of defects. This localization phenomenon, which is purely classical in nature, is explained in terms of the Lifshitz states of a certain random operator.

[1]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[2]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .

[3]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[4]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[5]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[6]  B. McMillan The Basic Theorems of Information Theory , 1953 .

[7]  I. Lifshitz,et al.  The energy spectrum of disordered systems , 1964 .

[8]  I. Lifshitz,et al.  Reviews of Topical Problems: Energy Spectrum Structure and Quantum States of Disordered Condensed Systems , 1965 .

[9]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[10]  L. Pastur Spectra of Random Self Adjoint Operators , 1973 .

[11]  J. M. Luttinger,et al.  Density of electronic energy levels in disordered systems , 1975 .

[12]  Srinivasa Varadhan,et al.  Asymptotics for the wiener sausage , 1975 .

[13]  S. Varadhan,et al.  On the number of distinct sites visited by a random walk , 1979 .

[14]  P. Grassberger,et al.  The long time properties of diffusion in a medium with static traps , 1982 .

[15]  F. Martinelli,et al.  Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians , 1983 .

[16]  J. H. Hetherington,et al.  Observations on the statistical iteration of matrices , 1984 .

[17]  Joseph W. Haus,et al.  Diffusion in regular and disordered lattices , 1987 .

[18]  T. Nieuwenhuizen Singularities in spectra of disordered systems , 1990 .

[19]  Ritort Glassiness in a Model without Energy Barriers. , 1995, Physical review letters.

[20]  Peter Sollich,et al.  Glassy dynamics of kinetically constrained models , 2002, cond-mat/0210382.

[21]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[22]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[23]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[24]  C. Anteneodo,et al.  Critical scaling in standard biased random walks. , 2007, Physical review letters.

[25]  S. Majumdar,et al.  Universal record statistics of random walks and Lévy flights. , 2008, Physical review letters.