Structure preserving integrators for solving (non-)linear quadratic optimal control problems with applications to describe the flight of a quadrotor

We present structure preserving integrators for solving linear quadratic optimal control problems. The goal is to build methods which can also be used for the integration of nonlinear problems if they are previously linearized. The equations are solved using an iterative method on a fixed mesh with the constraint that at each iteration one can only use results obtained in previous iterations on that fixed mesh. On the other hand, this problem requires the numerical integration of matrix Riccati differential equations whose exact solution is a symmetric positive definite time-dependent matrix which controls the stability of the equation for the state. This property is not preserved, in general, by the numerical methods. We analyze how to build methods for the linear problem taking into account the previous constraints, and we propose second order exponential methods based on the Magnus series expansion which unconditionally preserve positivity for this problem and analyze higher order Magnus integrators. The performance of the algorithms is illustrated with the stabilization of a quadrotor which is an unmanned aerial vehicle.

[1]  Quan Quan,et al.  Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances , 2011 .

[2]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[3]  Holger Voos Nonlinear state-dependent Riccati equation control of a quadrotor UAV , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[4]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[5]  H. Abou-Kandil,et al.  Matrix Riccati Equations in Control and Systems Theory , 2003, IEEE Transactions on Automatic Control.

[6]  Timo Eirola,et al.  Preserving monotonicity in the numerical solution of Riccati differential equations , 1996 .

[7]  Agus Budiyono,et al.  Optimal tracking controller design for a small scale helicopter , 2007, ArXiv.

[8]  Rogelio Lozano,et al.  Real-time stabilization and tracking of a four rotor mini-rotorcraft , 2003 .

[9]  L. Dieci,et al.  Positive definiteness in the numerical solution of Riccati differential equations , 1994 .

[10]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[11]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[12]  P. Castillo,et al.  Stabilization of a mini rotorcraft with four rotors , 2005, IEEE Control Systems.

[13]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[14]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[15]  Sergio Blanes,et al.  New efficient numerical methods to describe the heat transfer in a solid medium , 2011, Math. Comput. Model..

[16]  Rogelio Lozano,et al.  Real-time stabilization and tracking of a four-rotor mini rotorcraft , 2004, IEEE Transactions on Control Systems Technology.

[17]  Section De Microtechnique,et al.  design and control of quadrotors with application to autonomous flying , 2007 .

[18]  S. Blanes,et al.  Fourth-and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems , 2006 .

[19]  Enrique Ponsoda,et al.  Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds , 1995 .

[21]  D. Cooke,et al.  OPTIMAL TRAJECTORY PLANNING AND LQR CONTROL FOR A QUADROTOR UAV , 2006 .

[22]  Tayfun Çimen,et al.  State-Dependent Riccati Equation (SDRE) Control: A Survey , 2008 .

[23]  Sergio Blanes,et al.  Time-averaging and exponential integrators for non-homogeneous linear IVPs and BVPs , 2012 .

[24]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[25]  Albert E. Ruehli,et al.  WAVEFORM RELAXATION: THEORY AND PRACTICE , 1985 .

[26]  Emanuel Todorov,et al.  Optimal Control Theory , 2006 .

[27]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[28]  Jacob Engwerda,et al.  LQ Dynamic Optimization and Differential Games , 2005 .

[29]  Roland Siegwart,et al.  PID vs LQ control techniques applied to an indoor micro quadrotor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  E. Celledoni Lie group methods , 2009 .

[32]  Sergio Blanes,et al.  Magnus integrators for solving linear-quadratic differential games , 2012, J. Comput. Appl. Math..

[33]  Rogelio Lozano,et al.  Modelling and Control of Mini-Flying Machines , 2005 .