Hydrothermal liquefaction of cellulose in subcritical water—the role of crystallinity on the cellulose reactivity

The hydrothermal liquefaction of cellulose in subcritical water using reaction times from 25 to 110 minutes is studied. Major emphasis is put on the impact of the cellulose crystallinity on the degree of liquefaction, on the yields of the major reaction products, glucose and 5-(hydroxymethyl)furfural (5-HMF), and on the composition of the solid reaction residues. It is demonstrated that the crystallinity index (CI) of the used cellulose starting material plays a crucial role in the reaction mechanisms, the reaction rates and obtained product yields. Amorphous starting materials show a larger extent of liquefaction. Thus, 64% total liquid carbon is obtained for cellulose with a CI of 42 (MCC42), whereas that of MCC74 (CI 74) is 45%. The major liquefaction products are glucose and 5-HMF. It is shown that the cellulose conversion commences with a fast decomposition of the amorphous material domains, followed by a slower conversion of the crystalline cellulose domains.

[1]  T. Krause,et al.  UNTERSUCHUNGEN ZUR ALKALIBEHANDLUNG VON CELLULOSEFASERN. TEIL 1. INFRAROTSPEKTROSKOPISCHE UND RÖNTGENOGRAPHISCHE BEURTEILUNG DER ÄNDERUNG DES ORDNUNGSZUSTANDES , 1991 .

[2]  F. Harnisch,et al.  Microwave-assisted hydrothermal degradation of fructose and glucose in subcritical water , 2012 .

[3]  M. Ioelovich Accessibility and crystallinity of cellulose , 2009, BioResources.

[4]  R. Smith,et al.  Dissolution and recovery of cellulose from 1-butyl-3-methylimidazolium chloride in presence of water. , 2013, Carbohydrate polymers.

[5]  B. Kamm,et al.  Production of platform chemicals and synthesis gas from biomass. , 2007, Angewandte Chemie.

[6]  A. B. Fuertes,et al.  The production of carbon materials by hydrothermal carbonization of cellulose , 2009 .

[7]  H. Hofbauer,et al.  Synthetische Kraftstoffe aus Biomasse : Technik, Entwicklungen, Perspektiven , 2007 .

[8]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[9]  Andrea Kruse,et al.  Supercritical water gasification , 2008 .

[10]  M. Titirici,et al.  Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[11]  Yoshiharu Nishiyama,et al.  Structure and properties of the cellulose microfibril , 2009, Journal of Wood Science.

[12]  Uwe Schröder,et al.  Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane , 2012 .

[13]  Hao Luo,et al.  A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. , 2013, Bioresource technology.

[14]  S. Saka,et al.  Chemical conversion of various celluloses to glucose and its derivatives in supercritical water , 1999 .

[15]  Markus Antonietti,et al.  A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization , 2007 .

[16]  Uwe Schröder,et al.  Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. , 2011, ChemSusChem.

[17]  R. Reiner,et al.  Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods , 2010 .

[18]  A. Bridgwater,et al.  An overview of fast pyrolysis of biomass , 1999 .

[19]  Jeppe Rass-Hansen,et al.  The renewable chemicals industry. , 2008, ChemSusChem.

[20]  Morgan Fröling,et al.  Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies , 2008 .

[21]  S. Dutta Catalytic materials that improve selectivity of biomass conversions , 2012 .

[22]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .

[23]  A. B. Fuertes,et al.  Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. , 2009, Chemistry.

[24]  H. Grohn Über den mechanochemischen abbau von zellstoff durch schwingmahlung , 1958 .

[25]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[26]  B. Rånby,et al.  Recent Work on Molecular Weight of Cellulose , 1953 .

[27]  S. Al‐Zuhair The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. , 2008, Bioresource technology.

[28]  Lennart Salmén,et al.  Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. , 2004, Carbohydrate research.

[29]  X. Zhu,et al.  Effect of extremely low AlCl3 on hydrolysis of cellulose in high temperature liquid water , 2012 .

[30]  S. Saka,et al.  A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water , 2002 .

[31]  M. Klemm,et al.  Hydrothermal Treatment of Carboxy‐methyl Cellulose Salt: Formation and Decomposition of Furans, Pentenes and Benzenes , 2013 .

[32]  Prodromos Daoutidis,et al.  Continuous production of 5-hydroxymethylfurfural from fructose: a design case study , 2010 .

[33]  R. Smith,et al.  Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process , 2011 .

[34]  Michael E Himmel,et al.  Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance , 2010, Biotechnology for biofuels.

[35]  Hongwei Wu,et al.  Significant Differences in the Hydrolysis Behavior of Amorphous and Crystalline Portions within Microcrystalline Cellulose in Hot-Compressed Water , 2010 .

[36]  R. Newman,et al.  Changes in Cellulose Crystallinity During Kraft Pulping. Comparison of Infrared, X-ray Diffraction and Solid State NMR Results , 1995 .

[37]  Maria-Magdalena Titirici,et al.  Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons , 2011 .

[38]  A. Ragauskas,et al.  Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol , 2011 .

[39]  S. Hulleman,et al.  Determination of crystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy , 1994 .

[40]  Tao Zhang,et al.  Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts , 2012 .

[41]  David Rooney,et al.  Dilute Acid Hydrolysis of Cellulose and Cellulosic Bio-Waste Using a Microwave Reactor System , 2007 .

[42]  M. Mandels,et al.  Enzymatic hydrolysis of waste cellulose , 1974 .

[43]  Yadong Li,et al.  Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. , 2004, Angewandte Chemie.

[44]  H. Mark,et al.  Viskositätszahl-Molekulargewichts-Beziehung für Cellulose und Untersuchungen von Nitrocellulose in verschiedenen Lösungsmitteln , 1953 .

[45]  Robert Evans,et al.  Cellulose molecular weights determined by viscometry , 1989 .

[46]  M. Kasaai Comparison of various solvents for determination of intrinsic viscosity and viscometric constants for cellulose , 2002 .

[47]  H. Sixta,et al.  Structural changes in microcrystalline cellulose in subcritical water treatment. , 2011, Biomacromolecules.

[48]  Werner Bonrath,et al.  Microwave assisted synthesis – a critical technology overview , 2004 .

[49]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[50]  Ferdi Schüth,et al.  Acid hydrolysis of cellulose as the entry point into biorefinery schemes. , 2009, ChemSusChem.

[51]  L. Rosendahl,et al.  Hydrothermal liquefaction of biomass: A review of subcritical water technologies , 2011 .

[52]  Markus Antonietti,et al.  Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? , 2007 .