Ras oncogene-independent activation of RALB signaling is a targetable mechanism of escape from NRAS(V12) oncogene addiction in acute myeloid leukemia

[1]  D. Largaespada,et al.  RALB provides critical survival signals downstream of Ras in acute myeloid leukemia , 2016, Oncotarget.

[2]  CT Collins,et al.  Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets , 2016, Oncogene.

[3]  L. Kats,et al.  The CDK9 Inhibitor Dinaciclib Exerts Potent Apoptotic and Antitumor Effects in Preclinical Models of MLL-Rearranged Acute Myeloid Leukemia. , 2016, Cancer research.

[4]  Antonio Marchetti,et al.  The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies , 2015, Nature Genetics.

[5]  Hanh T. Nguyen,et al.  NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia. , 2014, Blood.

[6]  S. Fesik,et al.  Drugging the undruggable RAS: Mission Possible? , 2014, Nature Reviews Drug Discovery.

[7]  David L. Brautigan,et al.  Discovery and characterization of small molecules that target the GTPase Ral , 2014, Nature.

[8]  Shan Jiang,et al.  Yap1 Activation Enables Bypass of Oncogenic Kras Addiction in Pancreatic Cancer , 2014, Cell.

[9]  Beau R. Webber,et al.  Trp53 haploinsufficiency modifies EGFR-driven peripheral nerve sheath tumorigenesis. , 2014, The American journal of pathology.

[10]  J. Hess,et al.  C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis , 2014, Proceedings of the National Academy of Sciences.

[11]  D. Esposito,et al.  Dragging ras back in the ring. , 2014, Cancer cell.

[12]  D. MacEwan,et al.  Identification of Bruton's tyrosine kinase as a therapeutic target in acute myeloid leukemia. , 2014, Blood.

[13]  Travis J Cohoon,et al.  Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. , 2014, Cancer discovery.

[14]  G. Hampton,et al.  Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer , 2013, Oncogenesis.

[15]  N. Rosen,et al.  Tumor adaptation and resistance to RAF inhibitors , 2013, Nature Medicine.

[16]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[17]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[18]  M. Calaminici,et al.  P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. , 2013, Blood.

[19]  R. Levine,et al.  How do novel molecular genetic markers influence treatment decisions in acute myeloid leukemia? , 2012, Hematology. American Society of Hematology. Education Program.

[20]  G. Stamp,et al.  Genetic Deletion of RALA and RALB Small GTPases Reveals Redundant Functions in Development and Tumorigenesis , 2012, Current Biology.

[21]  K. Flaherty,et al.  Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. , 2012, The New England journal of medicine.

[22]  R. Bernards,et al.  Understanding resistance to targeted cancer drugs through loss of function genetic screens. , 2012, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[23]  J. Utikal,et al.  Improved survival with MEK inhibition in BRAF-mutated melanoma. , 2012, The New England journal of medicine.

[24]  Dirk Schadendorf,et al.  Improved survival with MEK Inhibition in BRAF-mutated melanoma for the METRIC Study Group , 2012 .

[25]  Yu Shyr,et al.  Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. , 2012, The New England journal of medicine.

[26]  L. Trusolino,et al.  Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils , 2011, EMBO molecular medicine.

[27]  D. Bar-Sagi,et al.  RAS oncogenes: weaving a tumorigenic web , 2011, Nature Reviews Cancer.

[28]  G. Feldmann,et al.  Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models , 2011, Cancer biology & therapy.

[29]  M. J. Ruiz,et al.  Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. , 2011, Blood.

[30]  S. Gygi,et al.  Survey of Activated FLT3 Signaling in Leukemia , 2011, PloS one.

[31]  T. Jacks,et al.  Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. , 2011, Blood.

[32]  C. Der,et al.  Aberrant Overexpression of the Rgl2 Ral Small GTPase-specific Guanine Nucleotide Exchange Factor Promotes Pancreatic Cancer Growth through Ral-dependent and Ral-independent Mechanisms* , 2010, The Journal of Biological Chemistry.

[33]  K. Flaherty,et al.  Inhibition of mutated, activated BRAF in metastatic melanoma. , 2010, The New England journal of medicine.

[34]  S. Lowe,et al.  p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. , 2010, Genes & development.

[35]  G. Feldmann,et al.  Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling. , 2010, Cancer research.

[36]  S. Salzberg,et al.  NIH Public Access Author Manuscript , 2006 .

[37]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[38]  Bob Löwenberg,et al.  Review Articles (434 articles) , 2008 .

[39]  D. Largaespada,et al.  RAS oncogene suppression induces apoptosis followed by more differentiated and less myelosuppressive disease upon relapse of acute myeloid leukemia. , 2009, Blood.

[40]  Rakesh Nagarajan,et al.  Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. , 2008, Blood.

[41]  K. Shannon,et al.  Targeting Ras in Myeloid Leukemias , 2008, Clinical Cancer Research.

[42]  J. Bishop,et al.  Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response , 2008, Proceedings of the National Academy of Sciences.

[43]  M. White,et al.  Ral GTPases and cancer: linchpin support of the tumorigenic platform , 2008, Nature Reviews Cancer.

[44]  G. Nolan,et al.  K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. , 2007, Blood.

[45]  S. Adam,et al.  Divergent Roles for RalA and RalB in Malignant Growth of Human Pancreatic Carcinoma Cells , 2006, Current Biology.

[46]  C. Sousa Faculty Opinions recommendation of RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. , 2006 .

[47]  M. White,et al.  RalB GTPase-Mediated Activation of the IκB Family Kinase TBK1 Couples Innate Immune Signaling to Tumor Cell Survival , 2006, Cell.

[48]  G. Mills,et al.  Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells , 2006, Molecular Cancer Therapeutics.

[49]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[50]  A M Martelli,et al.  Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia , 2006, Leukemia.

[51]  R. Hills,et al.  RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. , 2005, Blood.

[52]  S. Fröhling,et al.  Genetics of myeloid malignancies: pathogenetic and clinical implications. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[53]  J. Cedarbaum Survival , 2004 .

[54]  T. Jacks,et al.  Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Konopleva,et al.  Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia , 2005, Leukemia.

[56]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.