SHAPE ADAPTIVE AIRFOILS FOR TURBOMACHINERY APPLICATIONS UNDERGOING LARGE DEFORMATIONS

Smart materials and smart structural concepts in o w control have the potential for signican t impact on the design and performance of modern turbocompressors. Much of the research in active o w control in a compressor has focused on using blowing and suction or Micro Electro Mechanical System (MEMS) devices to alter the boundary layer on the surface. This paper gives a brief review on active materials and adaptive structures in turbomachinery applications. A preliminary study is conducted to identify the actuation requirements for an adaptive Inlet Guide Vane. Relations to currently available actuator technology are given and structural concepts are derived for the application in compressors. The main focus is on investigations of a novel o w control concept to allow a structural ’morphing’ and thus changing the aerodynamic characteristic of the airfoils.

[1]  Roshdy George S. Barsoum Active materials and adaptive structures , 1997 .

[2]  Ahmed K. Noor,et al.  Structures Technology for Future Aerospace Systems , 1998 .

[3]  M. S. Chandrasekhara,et al.  Compressible dynamic stall control using a shape adaptive airfoil , 1999 .

[4]  Nagi G. Naganathan,et al.  A finite-element static analysis of smart turbine blades , 1997 .

[5]  H. Faltin Dr. W. Traupel (o. Prof. a. d. ETH Zürich), Thermische Turbomaschinen. Erster Band: Thermodynamisch-strömungstechnische Berechnung. XII + 407 S. m. 402 Abb. u. 6 Tafeln. Berlin/Göttingen/Heidelberg 1958. Springer-Verlag. Preis geb. 58,50 DM , 1959 .

[6]  E Stanewsky,et al.  Adaptive wing and flow control technology , 2001 .

[7]  Raymond C. Montgomery,et al.  Subsonic maneuvering effectiveness of high-performance aircraft that employ quasi-static shape change devices , 1998, Smart Structures.

[8]  Bruce M. Steinetz,et al.  Shape memory alloy adaptive control of gas turbine engine compressor blade tip clearance , 1998, Smart Structures.

[9]  Jamey Jacob,et al.  AERODYNAMIC FLOW CONTROL USING SHAPE ADAPTIVE SURFACES , 1999 .

[10]  J F V Vincent Smart by name, smart by nature , 2000 .

[11]  S. Fleeter,,et al.  Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations , 2002 .

[12]  Egon Stanewsky,et al.  Aerodynamic benefits of adaptive wing technology , 2000 .

[13]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[14]  D. Sachau,et al.  Design Aspects of the Elastic Trailing Edge for an Adaptive Wing , 2000 .

[15]  Robert G. Loewy,et al.  REVIEW ARTICLE: Recent developments in smart structures with aeronautical applications , 1997 .

[16]  Gary L. Anderson,et al.  Current and potential future research activities in adaptive structures: an ARO perspective , 2001 .

[17]  D. MacMartin,et al.  Flow Control Opportunities in Gas Turbine Engines , 2000 .

[18]  Jinwei Feng,et al.  Active Flow Control For Reduction of Unsteady Stator-Rotor Interaction In a Turbofan Simulator , 2000 .

[19]  Rakesh K. Kapania,et al.  Structural and Aeroelastic Modeling of General Planform Wings with Morphing Airfoils , 2002 .

[20]  U. Stark,et al.  Theoretische und experimentelle Untersuchungen an ungestaffelten Gittern aus Profilen mit mechanischen Klappen , 1990 .

[21]  Michael Uelschen,et al.  Design of axial compressor airfoils with artificial neural networks and genetic algorithms , 2000 .

[22]  A. Musolff Adaptiver Tragflügel mit Formgedächtnisaktuatoren , 2001 .