Feasibility of a multigroup Boltzmann–Fokker–Planck solution for electron beam dose calculations

[1]  J. Carrier,et al.  Impacts of Nuclear-Reactor-Physics Models for Secondary Photons on Coupled Photon-Electron-Positron Transport Problems , 2022, Physical Review Applied.

[2]  C. Bienvenue,et al.  High-order diamond differencing schemes for the Boltzmann Fokker–Planck equation in 1D and 2D Cartesian geometries , 2022, Annals of Nuclear Energy.

[3]  D. Poon,et al.  The radiobiological effect of using Acuros XB vs anisotropic analytical algorithm on hepatocellular carcinoma stereotactic body radiation therapy. , 2022, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[4]  Christian Graeff,et al.  Dose Calculation Algorithms for External Radiation Therapy: An Overview for Practitioners , 2021, Applied Sciences.

[5]  PENELOPE 2018: A code system for Monte Carlo simulation of electron and photon transport , 2019, PENELOPE: A code system for Monte Carlo simulation of electron and photon transport.

[6]  P. Ramachandran,et al.  On the use of AAA and AcurosXB algorithms for three different stereotactic ablative body radiotherapy (SABR) techniques: Volumetric modulated arc therapy (VMAT), intensity modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3D-CRT). , 2019, Reports of practical oncology and radiotherapy : journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology.

[7]  Y. Rong,et al.  Clinical practice workflow in Radiation Oncology should be highly standardized , 2019, Journal of applied clinical medical physics.

[8]  Massimo V. Fischetti,et al.  Scalable atomistic simulations of quantum electron transport using empirical pseudopotentials , 2019, Comput. Phys. Commun..

[9]  Dermott E. Cullen,et al.  A Survey of Atomic Binding Energies for use in EPICS2017 , 2018 .

[10]  Dermott E. Cullen,et al.  A Survey of Electron Cross Section Data for use in EPICS2017 , 2017 .

[11]  X. Franceries,et al.  Monte Carlo dose calculation in presence of low-density media: Application to lung SBRT treated during DIBH. , 2017, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[12]  D. Pavord,et al.  Clinical implementation and evaluation of the Acuros dose calculation algorithm , 2017, Journal of applied clinical medical physics.

[13]  R. Popple,et al.  Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset , 2016, Journal of applied clinical medical physics.

[14]  L. Dewerd,et al.  Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms. , 2015, Medical physics.

[15]  Chuangzhen Chen,et al.  Dose calculation of Acuros XB and Anisotropic Analytical Algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size , 2015, Radiation oncology.

[16]  Mika Kapanen,et al.  The accuracy of Acuros XB algorithm for radiation beams traversing a metallic hip implant — comparison with measurements and Monte Carlo calculations , 2014, Journal of applied clinical medical physics.

[17]  V. Vlachoudis,et al.  The FLUKA Code: Developments and Challenges for High Energy and Medical Applications , 2014 .

[18]  D. Pafundi The Modern Technology of Radiation Oncology, Vol. 3: A Compendium for Medical Physicists and Radiation Oncologists , 2014 .

[19]  P. Kroon,et al.  Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans , 2013, Radiation oncology.

[20]  P. Yu,et al.  Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma. , 2013, Medical physics.

[21]  D. Reed,et al.  Verification and Dosimetric Impact of Acuros XB Algorithm for Stereotactic Body Radiation Therapy (SBRT) and RapidArc Planning for Non-Small-Cell Lung Cancer (NSCLC) Patients , 2013 .

[22]  L. Muren,et al.  Clinical validation of the Acuros XB photon dose calculation algorithm, a grid-based Boltzmann equation solver , 2012, Acta oncologica.

[23]  K. Bush,et al.  Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. , 2011, Medical physics.

[24]  Robert E. MacFarlane,et al.  Methods for Processing ENDF/B-VII with NJOY , 2010 .

[25]  Firas Mourtada,et al.  Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams , 2010, Physics in medicine and biology.

[26]  V. Demidov,et al.  Non-local collisionless and collisional electron transport in low-temperature plasma , 2009 .

[27]  Elinore Wieslander,et al.  The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[28]  F. Mourtada,et al.  Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations. , 2008, International journal of radiation oncology, biology, physics.

[29]  H Helminen,et al.  A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media , 2008, Physics in medicine and biology.

[30]  Zhe Chen,et al.  Evaluation of an electron Monte Carlo dose calculation algorithm for electron beams , 2008, Journal of applied clinical medical physics.

[31]  L. Urbán,et al.  A model for multiple scattering in GEANT4 , 2006 .

[32]  T. Bortfeld IMRT: a review and preview , 2006, Physics in medicine and biology.

[33]  Firas Mourtada,et al.  Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations , 2006, Physics in medicine and biology.

[34]  Irena Knezevic,et al.  Electronic transport in nanometre-scale silicon-on-insulator membranes , 2006, Nature.

[35]  Hartmut Hensel,et al.  Deterministic model for dose calculation in photon radiotherapy , 2006, Physics in medicine and biology.

[36]  L. Pitchford,et al.  Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models , 2005 .

[37]  W. Ulmer,et al.  A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations , 2005, Physics in medicine and biology.

[38]  T. Krieger,et al.  Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom , 2005, Physics in medicine and biology.

[39]  B. Fraass,et al.  Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy. , 2003, Medical physics.

[40]  M. Aspradakis,et al.  Experimental verification of convolution/superposition photon dose calculations for radiotherapy treatment planning. , 2003, Physics in medicine and biology.

[41]  W. Spanos,et al.  Commissioning of a mobile electron accelerator for intraoperative radiotherapy , 2001, Journal of applied clinical medical physics.

[42]  S B Jiang,et al.  Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning , 2000, Physics in medicine and biology.

[43]  R. Mohan,et al.  The impact of electron transport on the accuracy of computed dose. , 2000, Medical physics.

[44]  Jorg Wenninger,et al.  Accelerator Physics at LEP , 2000 .

[45]  A. Ahnesjö,et al.  Dose calculations for external photon beams in radiotherapy. , 1999, Physics in medicine and biology.

[46]  Jim E. Morel,et al.  A Hybrid Multigroup/Continuous-Energy Monte Carlo Method for Solving the Boltzmann-Fokker-Planck Equation , 1996 .

[47]  E W Larsen,et al.  On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport. , 1996, Medical Physics (Lancaster).

[48]  D. Jette Electron dose calculation using multiple-scattering theory: a new theory of multiple scattering. , 1996, Medical physics.

[49]  E. Larsen,et al.  The Fermi pencil beam approximation , 1995 .

[50]  T Knöös,et al.  Limitations of a pencil beam approach to photon dose calculations in lung tissue. , 1995, Physics in medicine and biology.

[51]  A. Brahme,et al.  A generalized pencil beam algorithm for optimization of radiation therapy. , 1994, Medical physics.

[52]  H. Wiedemann Particle accelerator physics , 1993 .

[53]  A. Ahnesjö,et al.  A pencil beam model for photon dose calculation. , 1992, Medical physics.

[54]  G. C. Pomraning THE FOKKER-PLANCK OPERATOR AS AN ASYMPTOTIC LIMIT , 1992 .

[55]  S. T. Perkins,et al.  Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100 , 1991 .

[56]  Jim E. Morel,et al.  Physics guide to CEPXS: A multigroup coupled electron-photon cross-section generating code , 1989 .

[57]  A Bielajew,et al.  Electron dose calculation using multiple-scattering theory: second-order multiple-scattering theory. , 1989, Medical physics.

[58]  A. Ahnesjö Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. , 1989, Medical physics.

[59]  P. Andreo,et al.  Inclusion of electron range straggling in the Fermi-Eyges multiple-scattering theory , 1989 .

[60]  H. Kooy,et al.  A three-dimensional electron pencil-beam algorithm. , 1989, Physics in medicine and biology.

[61]  J W Wong,et al.  A multiray model for calculating electron pencil beam distribution. , 1988, Medical physics.

[62]  David K. Brice,et al.  Stopping powers for electrons and positrons (ICRU report 37; International commission on radiation units and measurements, Bethesda, Maryland, USA, 1984) , 1985 .

[63]  Pascal R.M. Storchi,et al.  SCIENTIFIC NOTE: On a numerical approach of the pencil beam model , 1985 .

[64]  J. Battista,et al.  A convolution method of calculating dose for 15-MV x rays. , 1985, Medical physics.

[65]  E. Mok,et al.  A photon dose distribution model employing convolution calculations. , 1985, Medical physics.

[66]  S. Ichimura,et al.  Direct Monte Carlo simulation of scattering processes of kV electrons in aluminum; comparison of theoretical N( E) spectra with experiment , 1983 .

[67]  R. E. MacFarlane,et al.  The NJOY nuclear data processing system: Volume 1, User's manual , 1982 .

[68]  R. Macfarlane,et al.  The NJOY nuclear data processing system: Volume 2, The NJOY, RECONR, BROADR, HEATR, and THERMR modules , 1982 .

[69]  P. Almond,et al.  Electron beam dose calculations , 1981, Physics in medicine and biology.

[70]  J. Morel On the Validity of the Extended Transport Cross-Section Correction for Low-Energy Electron Transport , 1979 .

[71]  Merle E. Riley,et al.  Theoretical electron-atom elastic scattering cross sections , 1975 .

[72]  D. R. Harris,et al.  MINX: a multigroup interpretation of nuclear X-sections , 1973 .

[73]  Stanley Rogers,et al.  Review and Preview , 1965 .

[74]  J. W. Motz,et al.  Bremsstrahlung Cross-Section Formulas and Related Data , 1959 .

[75]  H. W. Koch,et al.  EVALUATION OF BREMSSTRAHLUNG CROSS SECTIONS AT THE HIGH-FREQUENCY LIMIT , 1958 .

[76]  U. Fano,et al.  Atomic Theory of Electromagnetic Interactions in Dense Materials , 1956 .

[77]  U. Fano Differential Inelastic Scattering of Relativistic Charged Particles , 1956 .

[78]  L. V. Spencer,et al.  THEORY OF ELECTRON PENETRATION , 1955 .

[79]  R. Sternheimer,et al.  Density Effect for the Ionization Loss in Various Materials , 1952 .

[80]  Leonard Eyges,et al.  Multiple Scattering with Energy Loss , 1948 .

[81]  Enrico Fermi,et al.  The Ionization Loss of Energy in Gases and in Condensed Materials , 1940 .

[82]  A. Hébert,et al.  Implementation of the ELECTR module in NJOY , 2023, EPJ Web of Conferences.

[83]  Mathias Voss 1 Introduction , 2021, Defence in a Changing World.

[84]  P. Nicolucci,et al.  Effects of heterogeneities in dose distributions under nonreference conditions: Monte Carlo simulation vs dose calculation algorithms. , 2019, Medical dosimetry : official journal of the American Association of Medical Dosimetrists.

[85]  A Survey of Photon Cross Section Data for use in EPICS 2017 , 2017 .

[86]  L. I. Scarm Energy-Angle Distribution of Thin Target Bremsstrahlung , 2011 .

[87]  J. Sempau,et al.  PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport , 2009 .

[88]  R. Macfarlane,et al.  The NJOY Nuclear Data Processing System , 2008 .

[89]  Jouko Tervo,et al.  INVERSE RADIOTHERAPY TREATMENT PLANNING MODEL APPLYING BOLTZMANN-TRANSPORT EQUATION , 2002 .

[90]  Radhe Mohan,et al.  Questions for comparison of clinical Monte Carlo codes , 2000 .

[91]  J P Kaipio,et al.  A finite-element model of electron transport in radiation therapy and a related inverse problem , 1999 .

[92]  B A Fraass,et al.  Electron dose calculations using the Method of Moments. , 1997, Medical physics.

[93]  Edward W. Larsen,et al.  Tutorial: The Nature of Transport Calculations Used in Radiation Oncology , 1997 .

[94]  Dietrich Harder,et al.  Applications of a Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning , 1996 .

[95]  K R Hogstrom,et al.  Pencil-beam redefinition algorithm for electron dose distributions. , 1991, Medical physics.

[96]  Stephen M. Seltzer,et al.  Electron-photon Monte Carlo calculations: The ETRAN code , 1991 .

[97]  R. Mohan,et al.  Differential pencil beam dose computation model for photons. , 1986, Medical physics.

[98]  Grant J. Lockwood,et al.  Calorimetric measurement of electron energy deposition in extended media. Theory vs experiment , 1980 .

[99]  R. F. Peierls,et al.  General expression for the density effect for the ionization loss of charged particles , 1971 .

[100]  G. E. Hansen,et al.  Multitable Treatments of Anisotropic Scattering in SN Multigroup Transport Calculations , 1967 .