An exact algorithm for the Boolean connectivity problem for k-CNF

We present an exact algorithm for a PSPACE-complete problem, denoted by CONNkSAT, which asks if the solution space for a given k-CNF formula is connected on the n-dimensional hypercube. The problem is known to be PSPACE-complete for k≥3, and polynomial solvable for k≤2 [6]. We show that CONN kSAT for k≥3 is solvable in time $O((2-\epsilon_k)^n)$ for some constant ek>0, where ek depends only on k, but not on n. This result is considered to be interesting due to the following fact shown by [5]: QBF-3-SAT, which is a typical PSPACE-complete problem, is not solvable in time O((2−e)n) for any constant e>0, provided that the SAT problem (with no restriction to the clause length) is not solvable in time O((2−e)n) for any constant e>0.

[1]  Andreas Björklund,et al.  The Travelling Salesman Problem in Bounded Degree Graphs , 2008, ICALP.

[2]  Chris Calabro,et al.  The exponential complexity of satisfiability problems , 2009 .

[3]  Kazuo Iwama,et al.  Improved upper bounds for 3-SAT , 2004, SODA '04.

[4]  Gerhard J. Woeginger,et al.  Exact Algorithms for NP-Hard Problems: A Survey , 2001, Combinatorial Optimization.

[5]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[6]  Mikko Koivisto,et al.  An O*(2^n ) Algorithm for Graph Coloring and Other Partitioning Problems via Inclusion--Exclusion , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[7]  Ryan Williams,et al.  A new algorithm for optimal 2-constraint satisfaction and its implications , 2005, Theor. Comput. Sci..

[8]  Uwe Schöning,et al.  A Probabilistic Algorithm for k -SAT Based on Limited Local Search and Restart , 2002, Algorithmica.

[9]  Konstantin Kutzkov,et al.  New upper bound for the #3-SAT problem , 2007, Inf. Process. Lett..

[10]  Christos H. Papadimitriou,et al.  The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..

[11]  Kazuhisa Makino,et al.  On the Boolean Connectivity Problem for Horn Relations , 2007, SAT.

[12]  Andreas Björklund,et al.  Inclusion--Exclusion Algorithms for Counting Set Partitions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[13]  Kazuhisa Makino,et al.  On the Boolean connectivity problem for Horn relations , 2010, Discret. Appl. Math..

[14]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[15]  Daniel Rolf,et al.  Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT , 2006, J. Satisf. Boolean Model. Comput..

[16]  Ryan Williams A new algorithm for optimal constraint satisfaction and its implications , 2004, Electron. Colloquium Comput. Complex..

[17]  Ryan Williams,et al.  Algorithms for quantified Boolean formulas , 2002, SODA '02.

[18]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[19]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[20]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[21]  Uwe Schöning,et al.  Algorithmics in Exponential Time , 2005, STACS.

[22]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.