Low-energy mass-selected ion beam deposition of silicon carbide with Bernas-type ion source using methylsilane

Methylsilane-derived fragment ions obtained from a Bernas-type ion source were investigated using a low-energy mass-selected ion beam system. Based on mass-energy analyzer measurements, these ions were determined to be H+, H2+, H3+, CH3+, Si+, and SiCH5+. The SiCH5+ ions were selected and injected into a Si(111) substrate at 750 °C. The ion energy was 40 eV. This injection led to the formation of a silicon carbide film on the Si substrate. An analysis of this film indicates that this type of ion beam deposition method can efficiently form silicon carbide film.

[1]  M. Kiuchi,et al.  Identification of fragment ions produced from hexamethyldigermane and the production of low-energy beam of fragment ion possessing Ge-C bond , 2019, AIP Advances.

[2]  M. Kiuchi,et al.  Low-energy mass-selected ion beam production of fragments from tetraethylorthosilicate for the formation of silicon dioxide film , 2018 .

[3]  M. Kiuchi,et al.  Low-Energy Mass-Selected Ion Beam Production of Fragments Produced from Hexamethyldisilane for SiC Film Formation , 2016 .

[4]  H. Barminova,et al.  Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source. , 2016, The Review of scientific instruments.

[5]  S. Sugimoto,et al.  Application of Ion Beam Induced Chemical Vapor Deposition for SiC Film Formation on Si Substrates using Methylsilane , 2015 .

[6]  M. Wada,et al.  Fluctuation of an ion beam extracted from an AC filament driven Bernas-type ion source. , 2014, The Review of scientific instruments.

[7]  M. Suemitsu,et al.  Growth Rate Anomaly in Ultralow-Pressure Chemical Vapor Deposition of 3C-SiC on Si(001) Using Monomethylsilane , 2011 .

[8]  F. Iacopi,et al.  Transition between amorphous and crystalline phases of SiC deposited on Si substrate using H3SiCH3 , 2009 .

[9]  R. Maboudian,et al.  Residual stress characterization of polycrystalline 3C-SiC films on Si(100) deposited from methylsilane , 2009 .

[10]  A. Ohi,et al.  Heteroepitaxial growth of 3C–SiC film on Si(100) substrate by plasma chemical vapor deposition using monomethylsilane , 2007 .

[11]  M. Kiuchi,et al.  Temporal evolution of ion fragment production from methylsilane by a hot tungsten wire , 2006 .

[12]  E. Oks,et al.  ITEP Bernas ion source with additional electron beam , 2006 .

[13]  S. Polozov,et al.  Transport line for beam generated by ITEP Bernas ion source , 2006 .

[14]  M. Kiuchi,et al.  Fragment Ions of Dimethylsilane Produced by Hot Tungsten Wires , 2006 .

[15]  A. V. Koslov,et al.  Decaborane beam from ITEP Bernas ion source , 2006 .

[16]  K. Yasui,et al.  Si c(4×4) structure appeared in the initial stage of 3C-SiC epitaxial growth on Si(0 0 1) using monomethylsilane and dimethylsilane , 2003 .

[17]  S. Sibener,et al.  Low-temperature growth of epitaxial β-SiC on Si(100) using supersonic molecular beams of methylsilane , 2002 .

[18]  M. Kiuchi,et al.  Growth of 3C–SiC(100) thin films on Si(100) by the molecular ion beam deposition , 2001 .

[19]  M. Kiuchi,et al.  Deposition of 3C-SiC films using ECR plasma of methylsilane , 2000 .

[20]  Teruaki Motooka,et al.  Growth of Ultrathin Epitaxial 3C-SiC Films on Si(100) by Pulsed Supersonic Free Jets of CH3SiH3 , 1999 .

[21]  J. Berg,et al.  Growth of carbon thin film by low-energy mass-selected ion beam deposition , 1999 .

[22]  S. Ustin,et al.  Supersonic jet epitaxy of silicon carbide on silicon using methylsilane , 1998 .

[23]  J. Sturm,et al.  Low temperature chemical vapor deposition growth of β-SiC on (100) Si using methylsilane and device characteristics , 1997 .

[24]  Y. Ohshita Reactants in SiC chemical vapor deposition using CH3SiH3 as a source gas , 1995 .

[25]  S. Rushworth,et al.  Structural and electronic characterization of β-SiC films on Si grown from mono-methylsilane precursors , 1995 .

[26]  S. Walther Characterization of a Bernas ion source for multiply charged ion implantation , 1994 .

[27]  K. Miyake,et al.  Formation of iron film by ion beam deposition , 1994 .

[28]  F. Reidinger,et al.  Single‐crystalline, epitaxial cubic SiC films grown on (100) Si at 750 °C by chemical vapor deposition , 1992 .

[29]  Y. Hakamata,et al.  Bucket type ion source using a microwave plasma cathode , 1989 .

[30]  I. Chavet,et al.  Practical factors affecting cathode performance in ion sources of the Nier-Bernas type , 1976 .

[31]  W. Harrison,et al.  Hollow cathode ion source for solids mass spectrometry , 1974 .

[32]  D. A. Kleinman,et al.  Infrared Properties of Cubic Silicon Carbide Films , 1959 .