Whole-exome sequencing identifies a novel de novo mutation in DYNC1H1 in epileptic encephalopathies

[1]  Zhongsheng Sun,et al.  Identification of Novel Compound Mutations in PLA2G6-Associated Neurodegeneration Patient with Characteristic MRI Imaging , 2017, Molecular Neurobiology.

[2]  S. Satya‐Murti,et al.  Clinical exome sequencing in neurologic disease. , 2016, Neurology. Clinical practice.

[3]  I. Scheffer,et al.  The genetic landscape of the epileptic encephalopathies of infancy and childhood , 2016, The Lancet Neurology.

[4]  Christa Lese Martin,et al.  A Cross-Disorder Method to Identify Novel Candidate Genes for Developmental Brain Disorders. , 2016, JAMA psychiatry.

[5]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[6]  Zhong Sheng Sun,et al.  Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database , 2016, Molecular Psychiatry.

[7]  D. Konn,et al.  G.P.124 Spinal Muscular Atrophy-Lower Extremity Dominant (SMA-LED), with bilateral perisylvian polymicrogyria and infantile epileptic encephalopathy, due a novel DYNC1H1 mutation , 2015, Neuromuscular Disorders.

[8]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[9]  T. Shiihara,et al.  De novo KCNT1 mutations in early‐onset epileptic encephalopathy , 2015, Epilepsia.

[10]  Karynne E. Patterson,et al.  The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. , 2015, American journal of human genetics.

[11]  Tristram H. Smith,et al.  Autism spectrum disorder and epilepsy: Disorders with a shared biology , 2015, Epilepsy & Behavior.

[12]  M. Tétreault,et al.  Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities , 2015, Expert review of molecular diagnostics.

[13]  Kali T. Witherspoon,et al.  Excess of rare, inherited truncating mutations in autism , 2015, Nature Genetics.

[14]  Jinchen Li,et al.  EpilepsyGene: a genetic resource for genes and mutations related to epilepsy , 2014, Nucleic Acids Res..

[15]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[16]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[17]  Oriane Trouillard,et al.  De novo mutations in HCN1 cause early infantile epileptic encephalopathy , 2014, Nature Genetics.

[18]  R. Vallee,et al.  Novel Dynein DYNC1H1 Neck and Motor Domain Mutations Link Distal Spinal Muscular Atrophy and Abnormal Cortical Development , 2014, Human mutation.

[19]  S. Nelson,et al.  Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. , 2014, Human molecular genetics.

[20]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[21]  Xuejun Zhang Exome sequencing greatly expedites the progressive research of Mendelian diseases , 2014, Frontiers of Medicine.

[22]  Markus Wolff,et al.  GRIN2B Mutations in West Syndrome and Intellectual Disability with Focal Epilepsy , 2014, Annals of neurology.

[23]  Naomichi Matsumoto,et al.  De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. , 2013, American journal of human genetics.

[24]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[25]  N. Mahdieh,et al.  An Overview of Mutation Detection Methods in Genetic Disorders , 2013, Iranian journal of pediatrics.

[26]  K. Veeramah,et al.  Exome sequencing reveals new causal mutations in children with epileptic encephalopathies , 2013, Epilepsia.

[27]  I. Blümcke,et al.  The methylation hypothesis of pharmacoresistance in epilepsy , 2013, Epilepsia.

[28]  Renzo Guerrini,et al.  Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly , 2013, Nature Genetics.

[29]  I. Scheffer,et al.  Recent advances in the molecular genetics of epilepsy , 2013, Journal of Medical Genetics.

[30]  M. Migliore,et al.  Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits , 2013, Proceedings of the National Academy of Sciences.

[31]  De novo mutations in epileptic encephalopathies , 2013 .

[32]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[33]  B. Kamien,et al.  A genetic diagnostic approach to infantile epileptic encephalopathies , 2012, Journal of Clinical Neuroscience.

[34]  N. Matsumoto,et al.  Early onset West syndrome with severe hypomyelination and coloboma‐like optic discs in a girl with SPTAN1 mutation , 2012, Epilepsia.

[35]  B. V. van Bon,et al.  Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects , 2012, Journal of Medical Genetics.

[36]  William B Dobyns,et al.  Genetic and biologic classification of infantile spasms. , 2011, Pediatric neurology.

[37]  M. Carniello,et al.  Long-term follow-up of the ketogenic diet for refractory epilepsy: Multicenter Argentinean experience in 216 pediatric patients , 2011, Seizure.

[38]  S. Levy,et al.  Exome sequencing supports a de novo mutational paradigm for schizophrenia , 2011, Nature Genetics.

[39]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[40]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[41]  Insuk Lee,et al.  Characterising and Predicting Haploinsufficiency in the Human Genome , 2010, PLoS genetics.

[42]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[43]  M. Komada,et al.  Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. , 2010, American journal of human genetics.

[44]  Annette Schenck,et al.  CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. , 2009, American journal of human genetics.

[45]  Shinji Saitoh,et al.  A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). , 2007, American journal of human genetics.

[46]  J. Gécz,et al.  Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. , 2004, American journal of human genetics.

[47]  Harumi Saito,et al.  RTP Family Members Induce Functional Expression of Mammalian Odorant Receptors , 2004, Cell.

[48]  I. Scheffer,et al.  Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy , 2002, Nature Genetics.

[49]  D. Bentley Current Challenges and Future Opportunities , 1989, Infection Control & Hospital Epidemiology.