Genomic and phenotypic evolution of Escherichia coli in a novel citrate-only resource environment

Evolutionary innovations allow populations to colonize new, previously inaccessible ecological niches. We previously reported that aerobic growth on citrate (Cit+) evolved in a population of Escherichia coli during adaptation to a minimal glucose medium containing citrate (DM25). Cit+ can grow in citrate-only medium (DM0), which is a novel environment for E. coli. To study adaptation to this new niche, we evolved one set of Cit+ populations for 2,500 generations in DM0 and a control set in DM25. We identified numerous parallel mutations, many mediated by transposable elements. Several lineages evolved multi-copy amplifications containing the maeA gene, constituting up to ∼15% of the genome. We also found substantial cell death in ancestral and evolved clones. Our results demonstrate the importance of copy-number variation and transposable elements in the refinement of the Cit+ trait. However, the observed mortality suggests a persistent evolutionary mismatch between E. coli physiology and a citrate-only environment.

[1]  S. Clusella‐Trullas,et al.  The evolutionary potential of an insect invader under climate change * , 2020, Evolution; international journal of organic evolution.

[2]  Rees Kassen,et al.  Experimental Evolution of Innovation and Novelty. , 2019, Trends in ecology & evolution.

[3]  Douglas H Erwin,et al.  Prospects for a General Theory of Evolutionary Novelty , 2019, J. Comput. Biol..

[4]  G. I. Lang,et al.  Adaptive evolution of nontransitive fitness in yeast , 2019, bioRxiv.

[5]  G. I. Lang,et al.  Adaptive evolution of a rock-paper-scissors sequence along a direct line of descent , 2019 .

[6]  D. Gresham,et al.  An evolving view of copy number variants , 2019, Current Genetics.

[7]  C. Queitsch,et al.  Substitutions Are Boring: Some Arguments about Parallel Mutations and High Mutation Rates. , 2019, Trends in genetics : TIG.

[8]  B. Levin,et al.  The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification , 2019, Nature Microbiology.

[9]  Antje Chang,et al.  BRENDA in 2019: a European ELIXIR core data resource , 2018, Nucleic Acids Res..

[10]  Ursula Oggenfuss,et al.  Stress-driven transposable element de-repression dynamics and virulence evolution in a fungal pathogen. , 2019, Molecular biology and evolution.

[11]  R. Lenski,et al.  Contingency and determinism in evolution: Replaying life’s tape , 2018, Science.

[12]  S. Lory,et al.  Insertion sequences drive the emergence of a highly adapted human pathogen , 2018, bioRxiv.

[13]  Haixu Tang,et al.  Insertion sequence elements-mediated structural variations in bacterial genomes , 2018, Mobile DNA.

[14]  Erik M. Quandt,et al.  Innovation in an E. coli evolution experiment is contingent on maintaining adaptive potential until competition subsides , 2018, PLoS genetics.

[15]  M. Dubin,et al.  Transposons: a blessing curse. , 2018, Current opinion in plant biology.

[16]  Antoine Frénoy,et al.  Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria , 2017, bioRxiv.

[17]  D. Erwin The topology of evolutionary novelty and innovation in macroevolution , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  Benjamin H. Good,et al.  The Dynamics of Molecular Evolution Over 60,000 Generations , 2017, Nature.

[19]  R. Lenski,et al.  Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations , 2017, The ISME Journal.

[20]  A. Aertsen,et al.  The impact of insertion sequences on bacterial genome plasticity and adaptability , 2017, Critical reviews in microbiology.

[21]  Richard E. Lenski,et al.  Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures , 2017, Proceedings of the National Academy of Sciences.

[22]  M. Adams,et al.  Assessment of Insertion Sequence Mobilization as an Adaptive Response to Oxidative Stress in Acinetobacter baumannii Using IS-seq , 2017, Journal of bacteriology.

[23]  Z. Ning,et al.  Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas , 2017, Proceedings of the National Academy of Sciences.

[24]  Lior Pachter,et al.  Differential analysis of RNA-seq incorporating quantification uncertainty , 2016, Nature Methods.

[25]  Anna G. Green,et al.  Core Genes Evolve Rapidly in the Long-Term Evolution Experiment with Escherichia coli , 2016, bioRxiv.

[26]  The UniProt Consortium UniProt: the universal protein knowledgebase , 2016, Nucleic Acids Res..

[27]  Paul A. Wiggins,et al.  SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells , 2016, Molecular Microbiology.

[28]  Z. D. Blount,et al.  A case study in evolutionary contingency. , 2016, Studies in history and philosophy of biological and biomedical sciences.

[29]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[30]  S. Minnich,et al.  Rapid Evolution of Citrate Utilization by Escherichia coli by Direct Selection Requires citT and dctA , 2016, Journal of bacteriology.

[31]  C. Osborne,et al.  Evolutionary implications of C3 -C4 intermediates in the grass Alloteropsis semialata. , 2016, Plant, cell & environment.

[32]  Richard E. Lenski,et al.  Tempo and mode of genome evolution in a 50,000-generation experiment , 2016, Nature.

[33]  George Georgiou,et al.  Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment , 2015, eLife.

[34]  D. Erwin Novelty and Innovation in the History of Life , 2015, Current Biology.

[35]  J. Kitzman,et al.  Experimental Evolution Identifies Vaccinia Virus Mutations in A24R and A35R That Antagonize the Protein Kinase R Pathway and Accompany Collapse of an Extragenic Gene Amplification , 2015, Journal of Virology.

[36]  Richard E. Lenski,et al.  Replaying Evolution to Test the Cause of Extinction of One Ecotype in an Experimentally Evolved Population , 2015, bioRxiv.

[37]  I. Koturbash,et al.  Response of transposable elements to environmental stressors. , 2015, Mutation research. Reviews in mutation research.

[38]  Moselio Schaechter,et al.  A brief history of bacterial growth physiology , 2015, Front. Microbiol..

[39]  Jeffrey E. Barrick,et al.  Adaptation, Clonal Interference, and Frequency-Dependent Interactions in a Long-Term Evolution Experiment with Escherichia coli , 2015, Genetics.

[40]  L. Wahl,et al.  Survival Probability of Beneficial Mutations in Bacterial Batch Culture , 2015, Genetics.

[41]  C. Turner Experimental evolution and ecological consequences: New niches and changing stoichiometry , 2015 .

[42]  J Julian Blow,et al.  Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks , 2014, eLife.

[43]  T. Hwa,et al.  Emergence of robust growth laws from optimal regulation of ribosome synthesis , 2014, Molecular systems biology.

[44]  A. Holmes,et al.  Insertion sequence ISPst4 activates pUC plasmid replication in Pseudomonas stutzeri. , 2014, FEMS microbiology letters.

[45]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[46]  M. Ackermann,et al.  The predictability of molecular evolution during functional innovation , 2014, Proceedings of the National Academy of Sciences.

[47]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[48]  Jeffrey E. Barrick,et al.  Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. , 2014, Methods in molecular biology.

[49]  Daniel E. Deatherage,et al.  Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[50]  Michael J. Wiser,et al.  Long-Term Dynamics of Adaptation in Asexual Populations , 2013, Science.

[51]  Joshua A. Lerman,et al.  Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments , 2013, Proceedings of the National Academy of Sciences.

[52]  Jeffrey E. Barrick,et al.  Genome dynamics during experimental evolution , 2013, Nature Reviews Genetics.

[53]  Vivek K. Mutalik,et al.  Composability of regulatory sequences controlling transcription and translation in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[54]  Martin A. Nuñez,et al.  The elephant in the room: the role of failed invasions in understanding invasion biology , 2013 .

[55]  Josefa González,et al.  The impact of transposable elements in environmental adaptation , 2013, Molecular ecology.

[56]  E. Urbán,et al.  Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. , 2013, International journal of antimicrobial agents.

[57]  Jun-Yi Leu,et al.  Dynamic Large-Scale Chromosomal Rearrangements Fuel Rapid Adaptation in Yeast Populations , 2013, PLoS genetics.

[58]  J. Roth,et al.  Real-Time Evolution of New Genes by Innovation, Amplification, and Divergence , 2012, Science.

[59]  Jeffrey E. Barrick,et al.  Genomic Analysis of a Key Innovation in an Experimental E. coli Population , 2012, Nature.

[60]  R. Lenski,et al.  Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[61]  M. Travisano,et al.  Experimental evolution of multicellularity , 2012, Proceedings of the National Academy of Sciences.

[62]  David J. Reiss,et al.  Niche adaptation by expansion and reprogramming of general transcription factors , 2011, Molecular systems biology.

[63]  D. G. Gibson,et al.  Enzymatic Assembly of Overlapping DNA Fragments , 2011, Methods in Enzymology.

[64]  D. Schneider,et al.  Insertion Sequence-Driven Evolution of Escherichia coli in Chemostats , 2011, Journal of Molecular Evolution.

[65]  A. Blakeslee,et al.  Establishment Failure in Biological Invasions: A Case History of Littorina littorea in California, USA , 2011, PloS one.

[66]  Wen-Hsiung Li,et al.  The genetic basis of evolutionary change in gene expression levels , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  R. Chisholm Invasion Biology , 2010 .

[68]  F. Delsuc Comparative Genomics , 2010, Lecture Notes in Computer Science.

[69]  Diarmaid Hughes,et al.  Gene amplification and adaptive evolution in bacteria. , 2009, Annual review of genetics.

[70]  Jingdong Tian,et al.  Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways , 2009, PloS one.

[71]  B. Gilbert,et al.  Plant invasions and the niche , 2009 .

[72]  Dolph Schluter,et al.  Genetics and ecological speciation , 2009, Proceedings of the National Academy of Sciences.

[73]  G. J. Velicer,et al.  Bacterial predators , 2009, Current Biology.

[74]  Dominique Schneider,et al.  Death and cannibalism in a seasonal environment facilitate bacterial coexistence. , 2009, Ecology letters.

[75]  R. Lenski,et al.  Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli , 2008 .

[76]  R. Hausinger,et al.  Identification of Escherichia coli YgaF as an l-2-Hydroxyglutarate Oxidase , 2008, Journal of bacteriology.

[77]  M. Pigliucci Is evolvability evolvable? , 2008, Nature Reviews Genetics.

[78]  T. Fujimura,et al.  Staphylococcus aureus Clinical Isolate with High-Level Methicillin Resistance with an lytH Mutation Caused by IS1182 Insertion , 2007, Antimicrobial Agents and Chemotherapy.

[79]  Wayne M Patrick,et al.  Multicopy suppression underpins metabolic evolvability. , 2007, Molecular biology and evolution.

[80]  J. Powles,et al.  Food, livestock production, energy, climate change, and health , 2007, The Lancet.

[81]  Jeffrey E. Barrick,et al.  Balancing Robustness and Evolvability , 2006, PLoS biology.

[82]  J. Beatty Replaying life's tape , 2006 .

[83]  P. Yeh RAPID EVOLUTION OF A SEXUALLY SELECTED TRAIT FOLLOWING POPULATION ESTABLISHMENT IN A NOVEL HABITAT , 2004, Evolution; international journal of organic evolution.

[84]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[85]  R. Phadke,et al.  Computational methods and evaluation of RNA stabilization reagents for genome-wide expression studies. , 2003, Journal of microbiological methods.

[86]  Robert T. Pennock,et al.  The evolutionary origin of complex features , 2003, Nature.

[87]  G. Brayer,et al.  Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases. , 2003, Biochemistry.

[88]  R. Lenski,et al.  Long-term experimental evolution in Escherichia coli. XI. Rejection of non-transitive interactions as cause of declining rate of adaptation , 2002, BMC Evolutionary Biology.

[89]  H. A. Orr,et al.  ADAPTATION AND THE COST OF COMPLEXITY , 2000, Evolution; international journal of organic evolution.

[90]  L. Martínez-Martínez,et al.  Development of Resistance during Antimicrobial Therapy Caused by Insertion Sequence Interruption of Porin Genes , 1999, Antimicrobial Agents and Chemotherapy.

[91]  W Arber,et al.  Genomic evolution during a 10,000-generation experiment with bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. Gerhart,et al.  Evolvability. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  T. Nyström,et al.  uspB, a New ςS-Regulated Gene in Escherichia coli Which Is Required for Stationary-Phase Resistance to Ethanol , 1998, Journal of bacteriology.

[94]  M. Chandler,et al.  Insertion Sequences , 1998, Microbiology and Molecular Biology Reviews.

[95]  P. Dimroth,et al.  The Escherichia coli Citrate Carrier CitT: a Member of a Novel Eubacterial Transporter Family Related to the 2-Oxoglutarate/Malate Translocator from Spinach Chloroplasts , 1998, Journal of bacteriology.

[96]  M. Chandler,et al.  Insertion Sequences , 1998, Microbiology and Molecular Biology Reviews.

[97]  R. Lenski,et al.  Tests of Ecological Mechanisms Promoting the Stable Coexistence of Two Bacterial Genotypes , 1996 .

[98]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[99]  S. Hammerschmidt,et al.  Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. , 1996, The EMBO journal.

[100]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[101]  Richard E. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. II. Changes in Life-History Traits During Adaptation to a Seasonal Environment , 1994, The American Naturalist.

[102]  M. Cannavo,et al.  Blessing Or Curse , 2011 .

[103]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations , 1991, The American Naturalist.

[104]  R. Lenski,et al.  Long-term experimental evolution in Escherichia coli , 1991 .

[105]  R. Lenski,et al.  Stability of recombinant DNA and its effects on fitness. , 1988, Trends in Ecology & Evolution.

[106]  J. Bailey,et al.  Theoretical growth yield estimates for recombinant cells. , 1986, Biotechnology and bioengineering.

[107]  J. Knott Dynamics of molecular evolution , 1986 .

[108]  S. Silver,et al.  Citrate utilization by Escherichia coli: plasmid- and chromosome-encoded systems , 1983, Journal of bacteriology.

[109]  C. Paquin,et al.  Relative fitness can decrease in evolving asexual populations of S. cerevisiae , 1983, Nature.

[110]  B. Hall Chromosomal mutation for citrate utilization by Escherichia coli K-12 , 1982, Journal of bacteriology.

[111]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[112]  Ernst Mayr,et al.  The emergence of evolutionary novelties , 1976 .

[113]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[114]  N. Tinbergen Behavior and natural selection , 1965 .

[115]  W. H. Camp Evolution after Darwin , 1960 .

[116]  S. Tax Evolution after Darwin , 1960 .

[117]  S. A. Barnett,et al.  The major features of evolution , 1955 .

[118]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[119]  S. Koser CORRELATION OF CITRATE UTILIZATION BY MEMBERS OF THE COLON-AEROGENES GROUP WITH OTHER DIFFERENTIAL CHARACTERISTICS AND WITH HABITAT , 1924, Journal of bacteriology.