Absolutely minimal Lipschitz extension of tree-valued mappings

We prove that every Lipschitz function from a subset of a locally compact length space to a metric tree has a unique absolutely minimal Lipschitz extension (AMLE). We relate these extensions to a stochastic game called Politics—a generalization of a game called Tug of War that has been used in Peres et al. (J Am Math Soc 22(1):167–210, 2009) to study real-valued AMLEs.

[1]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[2]  M. D. Kirszbraun Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .

[3]  F. A. Valentine Contractions in non-Euclidean spaces , 1944 .

[4]  F. A. Valentine A Lipschitz Condition Preserving Extension for a Vector Function , 1945 .

[5]  J. Isbell Six theorems about injective metric spaces , 1964 .

[6]  Joram Lindenstrauss,et al.  On nonlinear projections in Banach spaces. , 1964 .

[7]  G. Aronsson Extension of functions satisfying lipschitz conditions , 1967 .

[8]  James R. Munkres,et al.  Topology; a first course , 1974 .

[9]  R. Brent Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .

[10]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[11]  Nguyễn Tố Như,et al.  Lipschitz extensions and Lipschitz retractions in metric spaces , 1981 .

[12]  G. Pisier,et al.  Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes , 1984 .

[13]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[14]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[15]  J. Lindenstrauss,et al.  Extensions of lipschitz maps into Banach spaces , 1986 .

[16]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[17]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[18]  Krzysztof Przeslawski,et al.  Lipschitz retracts, selectors, and extensions. , 1995 .

[19]  A. Ndreas,et al.  T -theory : An Overview , 1996 .

[20]  Vincent Moulton,et al.  T-theory: An Overview , 1996, Eur. J. Comb..

[21]  Urs Lang,et al.  Kirszbraun's Theorem and Metric Spaces of Bounded Curvature , 1997 .

[22]  Donald A. Martin,et al.  The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.

[23]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[24]  J. Propp,et al.  Combinatorial Games under Auction Play , 1999 .

[25]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[26]  Абсолютно минимальные продолжения функций на метрических пространствах@@@Absolutely minimal extensions of functions on metric spaces , 1999 .

[27]  V. A. Mil'man Absolutely minimal extensions of functions on metric spaces , 1999 .

[28]  U. Lang,et al.  Extensions of Lipschitz maps into Hadamard spaces , 2000 .

[29]  G. Barles,et al.  EXISTENCE AND COMPARISON RESULTS FOR FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS WITHOUT ZEROTH-ORDER TERM* , 2001 .

[30]  L. Evans,et al.  Optimal Lipschitz extensions and the infinity laplacian , 2001 .

[31]  Assaf Naor,et al.  A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between Lp spaces , 2001 .

[32]  P. Shvartsman,et al.  Stability of the Lipschitz extension property under metric transforms , 2002 .

[33]  Petri Juutinen,et al.  ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS ON A METRIC SPACE , 2002 .

[34]  J. Lindenstrauss,et al.  Lipschitz Quotients from Metric Trees and from Banach Spaces Containing ℓ1 , 2002 .

[35]  Yann Gousseau,et al.  Interpolation of digital elevation models using AMLE and related methods , 2002, IEEE Trans. Geosci. Remote. Sens..

[36]  Sylvain Sorin,et al.  Stochastic Games and Applications , 2003 .

[37]  M. Crandall,et al.  A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .

[38]  Urs Lang,et al.  Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions , 2004, math/0410048.

[39]  E. Gruyer,et al.  ar 2 00 4 On Absolutely Minimizing Lipschitz Extensions and PDE ∆ ∞ ( u ) = 0 , 2004 .

[40]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[41]  Erwan Le Gruyer On absolutely minimizing lipschitz extensions and PDE $$\Delta_\infty (u) = 0$$ , 2004 .

[42]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[43]  Y. Peres,et al.  Tug-of-war and the infinity Laplacian , 2006, math/0605002.

[44]  F. Mémoli,et al.  Geometric Surface and Brain Warping via Geodesic Minimizing Lipschitz Extensions ? , 2006 .

[45]  Assaf Naor,et al.  Some applications of Ball’s extension theorem , 2006, Proceedings of the American Mathematical Society.

[46]  Champion,et al.  Principles of comparison with distance functions for absolute minimizers , 2007 .

[47]  N. Kalton Extending Lipschitz maps into C(K)-spaces , 2007 .

[48]  A. Brudnyi,et al.  LINEAR AND NONLINEAR EXTENSIONS OF LIPSCHITZ FUNCTIONS FROM SUBSETS OF METRIC SPACES , 2008 .

[49]  Guillermo Sapiro,et al.  On geometric variational models for inpainting surface holes , 2008, Comput. Vis. Image Underst..

[50]  Charles K. Smart,et al.  Vector‐valued optimal Lipschitz extensions , 2010, 1006.1741.

[51]  Charles K. Smart,et al.  An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions , 2009, 0906.3325.