Absolutely minimal Lipschitz extension of tree-valued mappings
暂无分享,去创建一个
[1] E. J. McShane,et al. Extension of range of functions , 1934 .
[2] M. D. Kirszbraun. Über die zusammenziehende und Lipschitzsche Transformationen , 1934 .
[3] F. A. Valentine. Contractions in non-Euclidean spaces , 1944 .
[4] F. A. Valentine. A Lipschitz Condition Preserving Extension for a Vector Function , 1945 .
[5] J. Isbell. Six theorems about injective metric spaces , 1964 .
[6] Joram Lindenstrauss,et al. On nonlinear projections in Banach spaces. , 1964 .
[7] G. Aronsson. Extension of functions satisfying lipschitz conditions , 1967 .
[8] James R. Munkres,et al. Topology; a first course , 1974 .
[9] R. Brent. Table errata: Algorithms for minimization without derivatives (Prentice-Hall, Englewood Cliffs, N. J., 1973) , 1975 .
[10] J. Wells,et al. Embeddings and Extensions in Analysis , 1975 .
[11] Nguyễn Tố Như,et al. Lipschitz extensions and Lipschitz retractions in metric spaces , 1981 .
[12] G. Pisier,et al. Characterizations of almost surely continuousp-stable random Fourier series and strongly stationary processes , 1984 .
[13] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[14] A. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .
[15] J. Lindenstrauss,et al. Extensions of lipschitz maps into Banach spaces , 1986 .
[16] Keith Ball,et al. Markov chains, Riesz transforms and Lipschitz maps , 1992 .
[17] R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .
[18] Krzysztof Przeslawski,et al. Lipschitz retracts, selectors, and extensions. , 1995 .
[19] A. Ndreas,et al. T -theory : An Overview , 1996 .
[20] Vincent Moulton,et al. T-theory: An Overview , 1996, Eur. J. Comb..
[21] Urs Lang,et al. Kirszbraun's Theorem and Metric Spaces of Bounded Curvature , 1997 .
[22] Donald A. Martin,et al. The determinacy of Blackwell games , 1998, Journal of Symbolic Logic.
[23] J. Morel,et al. An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.
[24] J. Propp,et al. Combinatorial Games under Auction Play , 1999 .
[25] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[27] V. A. Mil'man. Absolutely minimal extensions of functions on metric spaces , 1999 .
[28] U. Lang,et al. Extensions of Lipschitz maps into Hadamard spaces , 2000 .
[29] G. Barles,et al. EXISTENCE AND COMPARISON RESULTS FOR FULLY NONLINEAR DEGENERATE ELLIPTIC EQUATIONS WITHOUT ZEROTH-ORDER TERM* , 2001 .
[30] L. Evans,et al. Optimal Lipschitz extensions and the infinity laplacian , 2001 .
[31] Assaf Naor,et al. A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between Lp spaces , 2001 .
[32] P. Shvartsman,et al. Stability of the Lipschitz extension property under metric transforms , 2002 .
[33] Petri Juutinen,et al. ABSOLUTELY MINIMIZING LIPSCHITZ EXTENSIONS ON A METRIC SPACE , 2002 .
[34] J. Lindenstrauss,et al. Lipschitz Quotients from Metric Trees and from Banach Spaces Containing ℓ1 , 2002 .
[35] Yann Gousseau,et al. Interpolation of digital elevation models using AMLE and related methods , 2002, IEEE Trans. Geosci. Remote. Sens..
[36] Sylvain Sorin,et al. Stochastic Games and Applications , 2003 .
[37] M. Crandall,et al. A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .
[38] Urs Lang,et al. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions , 2004, math/0410048.
[39] E. Gruyer,et al. ar 2 00 4 On Absolutely Minimizing Lipschitz Extensions and PDE ∆ ∞ ( u ) = 0 , 2004 .
[40] Y. Peres,et al. Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.
[41] Erwan Le Gruyer. On absolutely minimizing lipschitz extensions and PDE $$\Delta_\infty (u) = 0$$ , 2004 .
[42] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[43] Y. Peres,et al. Tug-of-war and the infinity Laplacian , 2006, math/0605002.
[44] F. Mémoli,et al. Geometric Surface and Brain Warping via Geodesic Minimizing Lipschitz Extensions ? , 2006 .
[45] Assaf Naor,et al. Some applications of Ball’s extension theorem , 2006, Proceedings of the American Mathematical Society.
[46] Champion,et al. Principles of comparison with distance functions for absolute minimizers , 2007 .
[47] N. Kalton. Extending Lipschitz maps into C(K)-spaces , 2007 .
[48] A. Brudnyi,et al. LINEAR AND NONLINEAR EXTENSIONS OF LIPSCHITZ FUNCTIONS FROM SUBSETS OF METRIC SPACES , 2008 .
[49] Guillermo Sapiro,et al. On geometric variational models for inpainting surface holes , 2008, Comput. Vis. Image Underst..
[50] Charles K. Smart,et al. Vector‐valued optimal Lipschitz extensions , 2010, 1006.1741.
[51] Charles K. Smart,et al. An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions , 2009, 0906.3325.