Maximizing Specific Loss Power for Magnetic Hyperthermia by Hard-Soft Mixed Ferrites.

Maximized specific loss power and intrinsic loss power approaching theoretical limits for alternating-current (AC) magnetic-field heating of nanoparticles are reported. This is achieved by engineering the effective magnetic anisotropy barrier of nanoparticles via alloying of hard and soft ferrites. 22 nm Co0.03 Mn0.28 Fe2.7 O4 /SiO2 nanoparticles reach a specific loss power value of 3417 W g-1metal at a field of 33 kA m-1 and 380 kHz. Biocompatible Zn0.3 Fe2.7 O4 /SiO2 nanoparticles achieve specific loss power of 500 W g-1metal and intrinsic loss power of 26.8 nHm2 kg-1 at field parameters of 7 kA m-1 and 380 kHz, below the clinical safety limit. Magnetic bone cement achieves heating adequate for bone tumor hyperthermia, incorporating an ultralow dosage of just 1 wt% of nanoparticles. In cellular hyperthermia experiments, these nanoparticles demonstrate high cell death rate at low field parameters. Zn0.3 Fe2.7 O4 /SiO2 nanoparticles show cell viabilities above 97% at concentrations up to 500 µg mL-1 within 48 h, suggesting toxicity lower than that of magnetite.

[1]  Guanghai Li,et al.  Fe3O4@SiO2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses , 2012 .

[2]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[3]  M. Morales,et al.  Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications , 2012 .

[4]  Q. Pankhurst,et al.  On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials , 2014 .

[5]  Jinwoo Cheon,et al.  Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. , 2009, Angewandte Chemie.

[6]  Polina Anikeeva,et al.  Wireless magnetothermal deep brain stimulation , 2015, Science.

[7]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.

[8]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[9]  Theodore L. DeWeese,et al.  Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields , 2011 .

[10]  D. Kotsikau,et al.  Structural characterization and magnetic properties of sol–gel derived ZnxFe3–xO4 nanoparticles , 2015 .

[11]  Jorge T Dias,et al.  DNA as a molecular local thermal probe for the analysis of magnetic hyperthermia. , 2013, Angewandte Chemie.

[12]  Jung-tak Jang,et al.  Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. , 2012, Nano letters.

[13]  R. Ivkov,et al.  Physics of heat generation using magnetic nanoparticles for hyperthermia , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[14]  F. Starsich,et al.  Silica‐Coated Nonstoichiometric Nano Zn‐Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment , 2016, Advanced healthcare materials.

[15]  A. Kermanpur,et al.  Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0.3Fe2.7O4 nanoparticles for magnetic hyperthermia applications , 2017 .

[16]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[17]  Takao Matsubara,et al.  A novel hyperthermia treatment for bone metastases using magnetic materials , 2011, International Journal of Clinical Oncology.

[18]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[19]  Magn. , 2020, Catalysis from A to Z.

[20]  R. Muller,et al.  Ferrofluids of magnetic multicore nanoparticles for biomedical applications , 2009 .

[21]  J. Panyam,et al.  Effective elimination of cancer stem cells by magnetic hyperthermia. , 2013, Molecular pharmaceutics.

[22]  H. Zeng,et al.  Monodisperse magnetofluorescent nanoplatforms for local heating and temperature sensing. , 2014, Nanoscale.

[23]  S. Dutz,et al.  Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[24]  Heng Huang,et al.  Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. , 2010, Nature nanotechnology.

[25]  Taeghwan Hyeon,et al.  Inorganic Nanoparticles for MRI Contrast Agents , 2009 .

[26]  Zhigang Wang,et al.  Magnetic Hyperthermia Ablation of Tumors Using Injectable Fe₃O₄/Calcium Phosphate Cement. , 2015, ACS applied materials & interfaces.

[27]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[28]  Shan X. Wang,et al.  Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. , 2004, Journal of the American Chemical Society.

[29]  Chenjie Xu,et al.  New forms of superparamagnetic nanoparticles for biomedical applications. , 2013, Advanced drug delivery reviews.

[30]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[31]  Z. Li,et al.  PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer. , 2010, Acta biomaterialia.

[32]  Sébastien Lachaize,et al.  Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study , 2011 .

[33]  Jonathan S. Dordick,et al.  Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice , 2012, Science.

[34]  Rudolf Hergt,et al.  Magnetic particle hyperthermia—a promising tumour therapy? , 2014, Nanotechnology.

[35]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[36]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[37]  Yongtao Li,et al.  Magnetic, electronic and structural properties of ZnxFe3−xO4 , 2006 .

[38]  Dirk Schüler,et al.  Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools , 2005 .

[39]  K. Murase,et al.  Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field. , 2013, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[40]  Shouheng Sun,et al.  Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. , 2009, Chemical Society reviews.

[41]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[42]  M. G. Christiansen,et al.  Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. , 2013, ACS nano.

[43]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[44]  Shandong Li,et al.  Magnetic and transport property studies of nanocrystalline ZnxFe3−xO4 , 2006 .

[45]  M. G. Christiansen,et al.  High-Performance Ferrite Nanoparticles through Nonaqueous Redox Phase Tuning. , 2016, Nano letters.

[46]  Marc Respaud,et al.  Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization , 2011 .

[47]  Hao Zeng,et al.  Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. , 2005, The journal of physical chemistry. B.

[48]  Takashi Nakagawa,et al.  Suitability of commercial colloids for magnetic hyperthermia , 2009 .

[49]  B. Mehdaoui,et al.  Simple models for dynamic hysteresis loops calculation: Application to hyperthermia optimization , 2010, 1007.2009.

[50]  J. B. Segur,et al.  Viscosity of Glycerol and Its Aqueous Solutions , 1951 .

[51]  Liberato Manna,et al.  Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. , 2012, ACS nano.

[52]  A. Uchida,et al.  New ferromagnetic bone cement for local hyperthermia. , 1998, Journal of biomedical materials research.

[53]  Jinwoo Cheon,et al.  Exchange-coupled magnetic nanoparticles for efficient heat induction. , 2011, Nature nanotechnology.