Collaborative Visual Cryptography Schemes

A (<inline-formula> <tex-math notation="LaTeX">$k,n$ </tex-math></inline-formula>)-conventional visual cryptography (VC) scheme is designed to share one secret and each participant takes one share. When some common participants are involved in multiple VC schemes for multiple secrets, each needs to take multiple shares. This procedure needs more shares, which is inconvenient. It is desirable that the collaboration between the VC schemes can allow each common participant to keep only one share. Simply merging or gluing together two traditional (<inline-formula> <tex-math notation="LaTeX">$k_{1}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$n_{1}$ </tex-math></inline-formula>)- and (<inline-formula> <tex-math notation="LaTeX">$k_{2}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$n_{2}$ </tex-math></inline-formula>)-VC schemes, after making their pixel expansions the same, might be able to facilitate the collaboration and allow each common participant to keep only one share. But there is a security risk that when a subset of <inline-formula> <tex-math notation="LaTeX">$k_{1}$ </tex-math></inline-formula> participants are from the collection of noncommon participants, some from scheme 1 and some from scheme 2, they can reconstruct secret 1, which is inconsistent with the intention of the original scheme. Similarly, <inline-formula> <tex-math notation="LaTeX">$k_{2}$ </tex-math></inline-formula> noncommon participants could reconstruct secret 2. This shortcoming is inherited from the brute-force combination of traditional schemes. Therefore, a more sophisticated mechanism is required; this is the main task of this paper. In this paper, we first transform collaborative VC (CVC) schemes into the multiple secrets VC scheme with a general access structure. The construction of the basis matrices in CVC scheme between two VC schemes is formulated into an integer linear programming problem that minimizes the pixel expansion under the corresponding security and contrast constraints. Also the collaboration among more VC schemes is constructed. Finally, the experimental results illustrate the construction procedure of the CVC scheme and demonstrate the effectiveness of the CVC scheme.

[1]  Stelvio Cimato,et al.  Probabilistic Visual Cryptography Schemes , 2006, Comput. J..

[2]  Ran-Zan Wang,et al.  Region Incrementing Visual Cryptography , 2009, IEEE Signal Processing Letters.

[3]  Shyong Jian Shyu,et al.  General Constructions for Threshold Multiple-Secret Visual Cryptographic Schemes , 2013, IEEE Transactions on Information Forensics and Security.

[4]  Ching-Nung Yang,et al.  Visual Cryptography Schemes with Reversing , 2008, Comput. J..

[5]  Alfredo De Santis,et al.  Extended capabilities for visual cryptography , 2001, Theor. Comput. Sci..

[6]  Ching-Nung Yang,et al.  Visual secret sharing scheme: prioritizing the secret pixels with different pixel expansions to enhance the image contrast , 2007 .

[7]  Moni Naor,et al.  Visual Cryptography , 1994, Encyclopedia of Multimedia.

[8]  Xiaobo Li,et al.  Towards Shift Tolerant Visual Secret Sharing Schemes , 2010, IEEE Transactions on Information Forensics and Security.

[9]  Ching-Nung Yang,et al.  Optimal Contrast Grayscale Visual Cryptography Schemes With Reversing , 2013, IEEE Transactions on Information Forensics and Security.

[10]  Wei Sun,et al.  Extended Capabilities for XOR-Based Visual Cryptography , 2014, IEEE Transactions on Information Forensics and Security.

[11]  Shyong Jian Shyu,et al.  Efficient Construction for Region Incrementing Visual Cryptography , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[12]  Ching-Nung Yang,et al.  $k$ Out of $n$ Region Incrementing Scheme in Visual Cryptography , 2012, IEEE Trans. Circuits Syst. Video Technol..

[13]  Kun Chen,et al.  Visual multiple secret sharing based upon turning and flipping , 2011, Inf. Sci..

[14]  Xiaobo Li,et al.  Probabilistic visual secret sharing schemes for grey-scale images and color images , 2007, Inf. Sci..

[15]  Ching-Nung Yang,et al.  A general multi-secret visual cryptography scheme , 2010 .

[16]  Ching-Nung Yang,et al.  A discussion on the relationship between probabilistic visual cryptography and random grid , 2014, Inf. Sci..

[17]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[18]  Ching-Nung Yang,et al.  $k$ Out of $n$ Region Incrementing Scheme in Visual Cryptography , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[19]  Hideki Imai,et al.  An extended construction method for visual secret sharing schemes , 1998 .

[20]  Shyong Jian Shyu,et al.  Minimizing Pixel Expansion in Visual Cryptographic Scheme for General Access Structures , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Xiaobo Li,et al.  How to Collaborate between Threshold Schemes , 2013, ArXiv.

[22]  Ning Ma,et al.  Two secret sharing schemes based on Boolean operations , 2007, Pattern Recognit..

[23]  Shyong Jian Shyu,et al.  Optimum Pixel Expansions for Threshold Visual Secret Sharing Schemes , 2011, IEEE Trans. Inf. Forensics Secur..

[24]  Stelvio Cimato,et al.  Ideal contrast visual cryptography schemes with reversing , 2005, Inf. Process. Lett..

[25]  Henk D. L. Hollmann,et al.  XOR-based Visual Cryptography Schemes , 2005, Des. Codes Cryptogr..

[26]  Ching-Nung Yang,et al.  New visual secret sharing schemes using probabilistic method , 2004, Pattern Recognit. Lett..

[27]  Alfredo De Santis,et al.  Visual Cryptography for General Access Structures , 1996, Inf. Comput..

[28]  Xiaobo Li,et al.  On general construction for extended visual cryptography schemes , 2009, Pattern Recognit..

[29]  Stefan Droste,et al.  New Results on Visual Cryptography , 1996, CRYPTO.

[30]  Ching-Nung Yang,et al.  Property Analysis of XOR-Based Visual Cryptography , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  Adi Shamir,et al.  How to share a secret , 1979, CACM.