Simulating High Current Discharges of Power Optimized Li-Ion Cells

[1]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[2]  J. Newman,et al.  Double‐Layer Capacitance in a Dual Lithium Ion Insertion Cell , 1999 .

[3]  J. Newman,et al.  Heats of mixing and of entropy in porous insertion electrodes , 2003 .

[4]  G. Lindbergh,et al.  Electrochemical investigation of LiMn2O4 cathodes in gel electrolyte at various temperatures , 2002 .

[5]  Jan N. Reimers,et al.  Predicting current flow in spiral wound cell geometries , 2006 .

[6]  G. Lindbergh,et al.  Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS) , 2002 .

[7]  Ralph E. White,et al.  Parameter Estimation and Model Discrimination for a Lithium-Ion Cell , 2007 .

[8]  V. Subramanian,et al.  Transient Analysis of a Porous Electrode , 2005 .

[9]  D. Stevens,et al.  Importance of Heat Transfer by Radiation in Li ‐ Ion Batteries during Thermal Abuse , 1999 .

[10]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models , 2011 .

[11]  T. Abe,et al.  Lithium-ion transfer at a solid polymer electrolyte/non-graphitizable carbon electrode interface , 2005 .

[12]  J. Prakash,et al.  Evaluation of Electrochemical Interface Area and Lithium Diffusion Coefficient for a Composite Graphite Anode , 2004 .

[13]  Marc Doyle,et al.  Computer Simulations of the Impedance Response of Lithium Rechargeable Batteries , 2000 .

[14]  Chaoyang Wang,et al.  Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles , 2006 .

[15]  John N. Harb,et al.  Mathematical model of the discharge behavior of a spirally wound lead-acid cell , 1999 .

[16]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[17]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[18]  Ralph E. White,et al.  Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique , 2002 .

[19]  Karen E. Thomas,et al.  Mathematical Modeling of Lithium Batteries , 2002 .

[20]  Liquan Chen,et al.  Determination of Chemical Diffusion Coefficient of Lithium Ion in Graphitized Mesocarbon Microbeads with Potential Relaxation Technique , 2001 .

[21]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[22]  E. Deiss Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT , 2005 .

[23]  Ralph E. White,et al.  A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System , 2005 .

[24]  Ralph E. White,et al.  Modeling Heat Conduction in Spiral Geometries , 2003 .

[25]  Robert Spotnitz,et al.  Macro-homogenous Modeling of Commercial, Primary Li/MnO2 Coin Cells , 2009 .

[26]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[27]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[28]  John Newman,et al.  A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase , 2004 .

[29]  Karen E. Thomas,et al.  Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide , 2001 .

[30]  Qi Feng,et al.  AC Impedance Analysis for Li + Insertion of a Pt / λ ‐ MnO2 Electrode in an Aqueous Phase , 1996 .

[31]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[32]  J. Newman,et al.  The Use of UV/vis Absorption to Measure Diffusion Coefficients in LiPF6 Electrolytic Solutions , 2008 .

[33]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[34]  Ralph E. White,et al.  Mathematical modeling of lithium-ion and nickel battery systems , 2002 .

[35]  Marc Doyle,et al.  Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs , 2003 .

[36]  Jan N. Reimers,et al.  Algorithmic Improvements and PDE Decoupling, for the Simulation of Porous Electrode Cells , 2013 .

[37]  M. Doyle,et al.  The Impedance Response of a Porous Electrode Composed of Intercalation Particles , 2000 .

[38]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[39]  John Newman,et al.  Measuring the Salt Activity Coefficient in Lithium-Battery Electrolytes , 2008 .

[40]  G. Lindbergh,et al.  Characterisation and modelling of the transport properties in lithium battery gel electrolytes. Part I. The binary electrolyte PC/LiClO4 , 2004 .

[41]  Ralph E. White,et al.  Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model , 2007 .

[42]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[43]  Takeshi Abe,et al.  Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte , 2004 .

[44]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[45]  J. Paulsen,et al.  Numerical simulation of porous networks in relation to battery electrodes and separators , 2003 .