Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models

In recent years, advances in computational power have led to an increase in attempts to model the behaviour of wildland fires and to simulate their spread across landscape. The present series of articles endeavours to comprehensively survey and precis all types of surface fire spread models developed during the period 1990–2007. The present paper surveys models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one-dimensional models to two dimensions and then simulate the propagation of a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical concept (rather than a physical representation of fire spread) that coincidentally represents the spread of fire. Other papers in the series survey models of a physical or quasi-physical nature, and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.

[1]  C. E. Van Wagner,et al.  A Simple Fire-Growth Model , 1969 .

[2]  P. H. Kourtz,et al.  A Model a Small Forest Fire ... to Simulate Burned and Burning Areas for Use in a Detection Model , 1971 .

[3]  A. E. Stevenson,et al.  Simulation of southern california forest fires , 1975 .

[4]  Ian G. Enting,et al.  Crystal growth models and Ising models: Disorder points , 1977 .

[5]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[6]  Walter J. Karplus The spectrum of mathematical modeling and systems simulation , 1977 .

[7]  Ian R. Noble,et al.  McArthur's fire-danger meters expressed as equations , 1980 .

[8]  E. A. Catchpole,et al.  Modelling the spread of grass fires , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[9]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[10]  David G. Green,et al.  Fire shapes and the adequacy of fire-spread models , 1983 .

[11]  D. G. Green Shapes of simulated fires in discrete fuels , 1983 .

[12]  D. Stauffer,et al.  Fire propagation in a 2-D random medium , 1986 .

[13]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[14]  P. Andrews BEHAVE : Fire Behavior Prediction and Fuel Modeling System - BURN Subsystem, Part 1 , 1986 .

[15]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[16]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[17]  Alexander Blumen,et al.  Dynamic simulation of forest fires , 1988 .

[18]  T. Hatton,et al.  Fire spread through nonhomogeneous fuel modelled as a Markov process , 1989 .

[19]  Tom Beer The Australian National Bushfire model project , 1990 .

[20]  Ian G. Enting,et al.  Fire spread and percolation modelling , 1990 .

[21]  P. Bak,et al.  A deterministic critical forest fire model , 1990 .

[22]  D. H. Anderson,et al.  Graphical simulation of bushfire spread , 1990 .

[23]  G. Richards An elliptical growth model of forest fire fronts and its numerical solution , 1990 .

[24]  P. Bak,et al.  A forest-fire model and some thoughts on turbulence , 1990 .

[25]  David G. Green,et al.  Interactive simulation of bushfires in heterogeneous fuels , 1990 .

[26]  Tom Beer,et al.  Percolation theory and fire spread , 1990 .

[27]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[28]  B. R. Feiring An efficient procedure for obtaining feasible solutions to the n-city traveling salesman problem , 1990 .

[29]  Gl Ball,et al.  Improved Fire Growth Modeling , 1992 .

[30]  M. Vasconcelos,et al.  Firemap - Simulation of fire growth with a geographic information system , 1992 .

[31]  Drossel,et al.  Self-organized critical forest-fire model. , 1992, Physical review letters.

[32]  R. Pielke,et al.  A comprehensive meteorological modeling system—RAMS , 1992 .

[33]  John R. Coleman,et al.  A Fire Perimeter Expansion Algorithm-Based on Huygens Wavelet Propagation , 1993 .

[34]  Barbara Drossel,et al.  Forest-fire model with immune trees , 1993 .

[35]  B. M. Wotton,et al.  The use of fractal dimension to improve wildland fire perimeter predictions , 1993 .

[36]  N. Cheney,et al.  The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in Grasslands , 1993 .

[37]  Ross Taplin Sources of variation for fire spread rate in non-homogeneous fuel , 1993 .

[38]  G Wallace A Numerical Fire Simulation-Model , 1993 .

[39]  K. Clarke,et al.  A Cellular Automaton Model of Wildfire Propagation and Extinction , 1994 .

[40]  Drossel,et al.  Scaling laws and simulation results for the self-organized critical forest-fire model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  G. Richards A General Mathematical Framework for Modeling Two-Dimensional Wildland Fire Spread , 1995 .

[42]  F. Albini,et al.  Modeling Ignition and Burning Rate of Large Woody Natural Fuels , 1995 .

[43]  Anthony J. Roberts,et al.  Dimensional reduction of a bushfire model , 1995 .

[44]  G. Richards,et al.  A Computer Algorithm for Simulating the Spread of Wildland Fire Perimeters for Heterogeneous Fuel and Meteorological Conditions , 1995 .

[45]  F. Albini,et al.  Calibration of a Large Fuel Burnout Model , 1995 .

[46]  Loreto,et al.  Renormalization group approach to the critical behavior of the forest-fire model. , 1995, Physical review letters.

[47]  Drossel Self-organized criticality and synchronization in a forest-fire model. , 1996, Physical review letters.

[48]  Janice L. Coen,et al.  A Coupled AtmosphereFire Model: Convective Feedback on Fire-Line Dynamics , 1996 .

[49]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[50]  John R. Coleman,et al.  A real-time computer application for the prediction of fire spread across the Australian landscape , 1996, Simul..

[51]  Janice L. Coen,et al.  A Coupled Atmosphere-Fire Model: Role of the Convective Froude Number and Dynamic Fingering at the Fireline , 1996 .

[52]  F. Plourde,et al.  A new model of wildland fire simulation , 1997 .

[53]  José A. M. S. Duarte,et al.  Bushfire Automata and Their Phase Transitions , 1997 .

[54]  Ioannis G. Karafyllidis,et al.  A model for predicting forest fire spreading using cellular automata , 1997 .

[55]  Vicenç Méndez,et al.  Hyperbolic reaction-diffusion equations for a forest fire model , 1997 .

[56]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[57]  R. Anderson,et al.  Forest-fire as a model for the dynamics of disease epidemics , 1998 .

[58]  N. Cheney,et al.  Prediction of Fire Spread in Grasslands , 1998 .

[59]  D. Turcotte,et al.  Forest fires: An example of self-organized critical behavior , 1998, Science.

[60]  Coupled atmosphere-fire dynamics , 1999 .

[61]  Ioannis G. Karafyllidis,et al.  Acceleration of cellular automata algorithms using genetic algorithms , 1999 .

[62]  Miha Mraz,et al.  Intelligent bush fire spread prediction using fuzzy cellular automata , 1999, J. Intell. Fuzzy Syst..

[63]  Bruce D. Malamud,et al.  Self-Organized Criticality Applied to Natural Hazards , 1999 .

[64]  Ian Owens,et al.  A GIS-supported model for the simulation of the spatial structure of wildland fire, Cass Basin, New Zealand , 1999 .

[65]  Rebecca Retzlaff,et al.  Self-similar spatial clustering of wildland fires: The example of a large wildfire in Spain , 2000 .

[66]  R. M. Nelson,et al.  Prediction of diurnal change in 10-h fuel stick moisture content , 2000 .

[67]  Jean Nahmias,et al.  Fire spreading experiments on heterogeneous fuel beds. Applications of percolation theory , 2000 .

[68]  W. Hargrove,et al.  Simulating fire patterns in heterogeneous landscapes , 2000 .

[69]  Janice L. Coen Coupled atmosphere-fire model dynamics of a fireline crossing a hill , 2000 .

[70]  Barbara Drossel,et al.  Finite-size effects in the self-organized critical forest-fire model , 2000 .

[71]  R Pastor-Satorras,et al.  Corrections to scaling in the forest-fire model. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[72]  Lance M. Leslie,et al.  Modelling fire weather and fire spread rates for two bushfires near Sydney , 2001 .

[73]  G. Caldarelli,et al.  Percolation in real wildfires , 2001, cond-mat/0108011.

[74]  Janice L. Coen,et al.  Coupling Atmospheric and Fire Models , 2001 .

[75]  Peter W. Eklund A distributed spatial architecture for bush fire simulation , 2001, Int. J. Geogr. Inf. Sci..

[76]  Henrik Jeldtoft Jensen,et al.  Broken scaling in the forest-fire model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  L. Ferragut,et al.  On a wildland fire model with radiation , 2002 .

[78]  A. M. G. Lopes,et al.  FireStation - an integrated software system for the numerical simulation of fire spread on complex topography , 2002, Environ. Model. Softw..

[79]  Gabriel A. Wainer,et al.  Cell-DEVS quantization techniques in a fire spreading application , 2002, Proceedings of the Winter Simulation Conference.

[80]  William J. Reed,et al.  Power-law behaviour and parametric models for the size-distribution of forest fires , 2002 .

[81]  M. Finney Fire growth using minimum travel time methods , 2002 .

[82]  Barbara Drossel,et al.  Self-organized critical forest-fire model on large scales. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  Francis Fujioka,et al.  A new method for the analysis of fire spread modeling errors , 2002 .

[84]  John W. Hearne,et al.  An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system , 2002 .

[85]  P. Grassberger Critical behaviour of the Drossel-Schwabl forest fire model , 2002, cond-mat/0202022.

[86]  G. Guariso,et al.  A simulation software of forest fires based on two-level cellular automata , 2002 .

[87]  E. Pastor,et al.  Mathematical models and calculation systems for the study of wildland fire behaviour , 2003 .

[88]  Xiaodong Li,et al.  Critical Density in a Fire Spread Model Under Environmental Influence , 2003, Int. J. Comput. Intell. Appl..

[89]  C. Matthai,et al.  Investigation of the forest-fire model on a small-world network. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Jean François Santucci,et al.  Optimization of cell spaces simulation for the modeling of fire spreading , 2003, 36th Annual Simulation Symposium, 2003..

[91]  Ioannis Karafyllidis,et al.  Design of a dedicated parallel processor for the prediction of forest fire spreading using cellular automata and genetic algorithms , 2004, Eng. Appl. Artif. Intell..

[92]  Charly Favier Percolation model of fire dynamic , 2004 .

[93]  Chris T. Kiranoudis,et al.  A GIS based operational system for wildland fire crisis management I. Mathematical modelling and simulation , 2004 .

[94]  T. Clark,et al.  Description of a coupled atmosphere–fire model , 2004 .

[95]  Bernard P. Zeigler,et al.  Forest Fire Spread and Suppression in DEVS , 2004, Simul..

[96]  Francisco J. Serón,et al.  The Evolution of a WILDLAND Forest FIRE FRONT , 2005, The Visual Computer.

[97]  Giuseppe A. Trunfio Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model , 2004, ACRI.

[98]  Adam G. Dunn,et al.  Modelling Wildfire Dynamics via Interacting Automata , 2004, ACRI.

[99]  Fabio Dercole,et al.  Detection and continuation of a border collision bifurcation in a forest fire model , 2005, Appl. Math. Comput..

[100]  Gabriel A. Wainer,et al.  Specification of Discrete Event Models for Fire Spreading , 2005, Simul..

[101]  M. Isabel Asensio,et al.  A convection model for fire spread simulation , 2005, Appl. Math. Lett..

[102]  Jean François Santucci,et al.  Modelling and simulation of ecological propagation processes: application to fire spread , 2005, Environ. Model. Softw..

[103]  Janice L. Coen,et al.  Simulation of the Big Elk Fire using coupled atmosphere–fire modeling , 2005 .

[104]  Tonja S. Opperman,et al.  Applying fire spread simulators in New Zealand and Australia: Results from an international seminar , 2006 .

[105]  George J. Milne,et al.  A heat transfer simulation model for wildfire spread , 2006 .

[106]  Charles W. McHugh,et al.  The impact of high resolution wind field simulations on the accuracy of fire growth predictions , 2006 .

[107]  B. Porterie,et al.  Modeling forest fire spread and spotting process with small world networks , 2007 .

[108]  Ascensión Hernández Encinas,et al.  Simulation of forest fire fronts using cellular automata , 2007, Adv. Eng. Softw..

[109]  A. Dunn A model of wildfire propagation using the interacting spatial automata formalism , 2007 .

[110]  A. Martín del Rey,et al.  Modelling forest fire spread using hexagonal cellular automata , 2007 .

[111]  Á. Corral,et al.  Scaling and correlations in the dynamics of forest-fire occurrence. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[113]  Peter A. Thomas,et al.  Fire in the Forest , 2010 .

[114]  A. Sullivan A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models , 2007, 0706.3074.