Advances in MRI Methodology.

Magnetic resonance imaging (MRI) is a non-invasive technique which can provide comprehensive, multi-parametric information on brain anatomy, function and metabolism. This chapter will give a brief introduction to the basic principles of MR and cover the evolution of image acquisition. Given the versatility of MR, a vast range of MR applications will be discussed, including structural, diffusion tensor, functional, perfusion and neuromelanin-sensitive imaging, as well as quantitative susceptibility mapping. This chapter will also cover methodological developments in MRI, including image analysis approaches that can be tailored according to experimental design or aims. The ultimate goal of this chapter is to equip readers with a fundamental understanding of the proficiencies and limitations of MR techniques and their corresponding analysis approaches.

[1]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[2]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[3]  Petra Schmalbrock,et al.  DTI at 7 and 3 T: systematic comparison of SNR and its influence on quantitative metrics. , 2011, Magnetic resonance imaging.

[4]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[5]  Y. Zang,et al.  Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI , 2007, Brain and Development.

[6]  S Laureys,et al.  Intrinsic Brain Activity in Altered States of Consciousness , 2008, Annals of the New York Academy of Sciences.

[7]  Mert R. Sabuncu,et al.  Task-Optimal Registration Cost Functions , 2009, MICCAI.

[8]  M. Chou,et al.  Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography , 2010, American Journal of Neuroradiology.

[9]  Karsten Specht,et al.  In vivo voxel-based morphometry in multiple system atrophy of the cerebellar type. , 2003, Archives of neurology.

[10]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[11]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[12]  A. Alexander,et al.  Hybrid Diffusion Imaging (HYDI) , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[13]  J. Pekar,et al.  MR color mapping of myelin fiber orientation. , 1991, Journal of computer assisted tomography.

[14]  L Bolinger,et al.  Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[16]  R Weissleder,et al.  Paramagnetic metal scavenging by melanin: MR imaging. , 1997, Radiology.

[17]  J. Finsterbusch,et al.  Rapid isotropic diffusion mapping without susceptibility artifacts: Whole brain studies using diffusion‐weighted single‐shot STEAM MR imaging , 2000, Magnetic resonance in medicine.

[18]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[19]  Flavio Dell'Acqua,et al.  Structural human brain networks: hot topics in diffusion tractography. , 2012, Current opinion in neurology.

[20]  Max A. Viergever,et al.  MR venography of the human brain using susceptibility weighted imaging at very high field strength , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[21]  Jeff H. Duyn,et al.  The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain , 2012, NeuroImage.

[22]  C. Summerfield,et al.  Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. , 2005, Archives of neurology.

[23]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[24]  Yingli Lu,et al.  Regional homogeneity approach to fMRI data analysis , 2004, NeuroImage.

[25]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[26]  Kaleem Siddiqi,et al.  Recent advances in diffusion MRI modeling: Angular and radial reconstruction , 2011, Medical Image Anal..

[27]  J. Detre,et al.  Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis , 1999, Journal of magnetic resonance imaging : JMRI.

[28]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[29]  F. Piras,et al.  Regional cortical thickness and cognitive functions in non‐demented Parkinson’s disease patients: a pilot study , 2012, European journal of neurology.

[30]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[31]  Yasuo Terayama,et al.  Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease , 2006, Neuroreport.

[32]  John Russell,et al.  Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water , 2002, NeuroImage.

[33]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[34]  John Suckling,et al.  Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus , 2006, Neurobiology of Aging.

[35]  Andreas Heinz,et al.  Test–retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures , 2012, NeuroImage.

[36]  Siegfried Trattnig,et al.  Combining phase images from multi‐channel RF coils using 3D phase offset maps derived from a dual‐echo scan , 2011, Magnetic resonance in medicine.

[37]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[38]  Karl J. Friston,et al.  Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  P M Jakob,et al.  High-resolution diffusion imaging using a radial turbo-spin-echo sequence: implementation, eddy current compensation, and self-navigation. , 2000, Journal of magnetic resonance.

[40]  D. S. Williams,et al.  Magnetic resonance imaging of perfusion using spin inversion of arterial water. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Kucharczyk,et al.  Early detection of regional cerebral ischemia in cats: Comparison of diffusion‐ and T2‐weighted MRI and spectroscopy , 1990, Magnetic resonance in medicine.

[42]  Cornelis J Stam,et al.  Graph theoretical analysis of complex networks in the brain , 2007, Nonlinear biomedical physics.

[43]  E M Haacke,et al.  Iron stores and cerebral veins in MS studied by susceptibility weighted imaging. , 2010, International angiology : a journal of the International Union of Angiology.

[44]  Vince D. Calhoun,et al.  A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data , 2009, NeuroImage.

[45]  Guangbin Wang,et al.  Subtypes evaluation of motor dysfunction in Parkinson’s disease using neuromelanin-sensitive magnetic resonance imaging , 2017, Neuroscience Letters.

[46]  Chris A Clark,et al.  Singularities in diffusion tensor fields and their relevance in white matter fiber tractography , 2004, NeuroImage.

[47]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[48]  Y. Cheng,et al.  Susceptibility mapping as a means to visualize veins and quantify oxygen saturation , 2010, Journal of magnetic resonance imaging : JMRI.

[49]  E. Haacke,et al.  Imaging iron stores in the brain using magnetic resonance imaging. , 2005, Magnetic resonance imaging.

[50]  John A. Detre,et al.  Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences , 2013, NeuroImage.

[51]  Pascal Spincemaille,et al.  Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping , 2013, Magnetic resonance in medicine.

[52]  T. Chenevert,et al.  Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. , 1990, Radiology.

[53]  C. Enzinger,et al.  Emotion recognition and experience in Huntington disease: a voxel-based morphometry study. , 2011, Journal of psychiatry & neuroscience : JPN.

[54]  T. Brown,et al.  Regression algorithm correcting for partial volume effects in arterial spin labeling MRI , 2008, Magnetic resonance in medicine.

[55]  D. Alsop,et al.  Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields , 2008, Magnetic resonance in medicine.

[56]  Song-Fang Chen,et al.  Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements , 2016, Scientific Reports.

[57]  B. Hallgren,et al.  THE EFFECT OF AGE ON THE NON‐HAEMIN IRON IN THE HUMAN BRAIN , 1958, Journal of neurochemistry.

[58]  Fbirn,et al.  A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia , 2013, Front. Neurosci..

[59]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[60]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[61]  Marios Politis,et al.  Neuroimaging in Parkinson disease: from research setting to clinical practice , 2014, Nature Reviews Neurology.

[62]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[63]  S. Zeki,et al.  The chronoarchitecture of the cerebral cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[64]  P. Bandettini,et al.  What's New in Neuroimaging Methods? , 2009, Annals of the New York Academy of Sciences.

[65]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[66]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[67]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[68]  Gareth J. Barker,et al.  Cortical Thickness, Surface Area and Volume Measures in Parkinson's Disease, Multiple System Atrophy and Progressive Supranuclear Palsy , 2014, PloS one.

[69]  E. Haacke,et al.  Quantitative susceptibility mapping: current status and future directions. , 2015, Magnetic resonance imaging.

[70]  Ferdinand Schweser,et al.  Toward online reconstruction of quantitative susceptibility maps: Superfast dipole inversion , 2013, Magnetic resonance in medicine.

[71]  Karl J. Friston,et al.  Computing average shaped tissue probability templates , 2009, NeuroImage.

[72]  Qin Chen,et al.  Functional connectome assessed using graph theory in drug-naive Parkinson’s disease , 2015, Journal of Neurology.

[73]  J. Thiran,et al.  Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[74]  H. Mayberg,et al.  Correction of PET Data for Partial Volume Effects in Human Cerebral Cortex by MR Imaging , 1990, Journal of computer assisted tomography.

[75]  M. Politis,et al.  Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease , 2018, Brain : a journal of neurology.

[76]  Kaiming Li,et al.  Review of methods for functional brain connectivity detection using fMRI , 2009, Comput. Medical Imaging Graph..

[77]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[78]  D. Yablonskiy,et al.  Biophysical mechanisms of phase contrast in gradient echo MRI , 2009, Proceedings of the National Academy of Sciences.

[79]  Yong He,et al.  Graph-based network analysis of resting-state functional MRI. , 2010 .

[80]  Chaozhe Zhu,et al.  An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF , 2008, Journal of Neuroscience Methods.

[81]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[82]  J. Duyn,et al.  Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data , 2009, Magnetic resonance in medicine.

[83]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[84]  E. Formisano,et al.  Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest , 2004, Human brain mapping.

[85]  Polina Golland,et al.  Automated segmentation of hippocampal subfields from ultra‐high resolution in vivo MRI , 2009, Hippocampus.

[86]  Daniel B. Vigneron,et al.  Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases , 2008, NeuroImage.

[87]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[88]  P. Chauvel,et al.  Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms , 2009, Human brain mapping.

[89]  Derek K. Jones Studying connections in the living human brain with diffusion MRI , 2008, Cortex.

[90]  Xiaoping Hu,et al.  Single‐shot multiecho parallel echo‐planar imaging (EPI) for diffusion tensor imaging (DTI) with improved signal‐to‐noise ratio (SNR) and reduced distortion , 2008, Magnetic resonance in medicine.

[91]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Karl J. Friston,et al.  Voxel-based morphometry of the human brain: Methods and applications , 2005 .

[93]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[94]  Yufeng Zang,et al.  DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI , 2010 .

[95]  J R Reichenbach,et al.  In vivo measurement of blood oxygen saturation using magnetic resonance imaging: A direct validation of the blood oxygen level‐dependent concept in functional brain imaging , 1997, Human brain mapping.

[96]  Fernando Zelaya,et al.  ASAP (Automatic Software for ASL Processing): A toolbox for processing Arterial Spin Labeling images. , 2016, Magnetic resonance imaging.

[97]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[98]  Marie Vidailhet,et al.  The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. , 2016, Brain : a journal of neurology.

[99]  Alan C. Evans,et al.  Neuronal Networks in Alzheimer's Disease , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[100]  B. Biswal,et al.  Network homogeneity reveals decreased integrity of default-mode network in ADHD , 2008, Journal of Neuroscience Methods.

[101]  Edward T. Bullmore,et al.  Small-World Brain Networks Revisited , 2016, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[102]  G. Zaharchuk,et al.  Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. , 2015, Magnetic resonance in medicine.

[103]  James G Pipe,et al.  Multishot diffusion‐weighted FSE using PROPELLER MRI , 2002, Magnetic resonance in medicine.

[104]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[106]  G K Wenning,et al.  Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[107]  A. Lawrence,et al.  Morphometric changes in the reward system of Parkinson’s disease patients with impulse control disorders , 2015, Journal of Neurology.

[109]  Jerry L Prince,et al.  Effects of signal‐to‐noise ratio on the accuracy and reproducibility of diffusion tensor imaging–derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T , 2007, Journal of magnetic resonance imaging : JMRI.

[110]  C. Jack,et al.  Voxel-based morphometry in autopsy proven PSP and CBD , 2008, Neurobiology of Aging.

[111]  Jerry L. Prince,et al.  Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI , 2012, NeuroImage.

[112]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[113]  R. Edelman,et al.  Clinical magnetic resonance imaging , 1990 .

[114]  Sergio Cerutti,et al.  Contrast mechanisms associated with neuromelanin‐MRI , 2017, Magnetic resonance in medicine.

[115]  J. Kaas,et al.  Response to Comment on “The Geometric Structure of the Brain Fiber Pathways” , 2012, Science.

[116]  Nuria Bargallo,et al.  Assessment of cortical degeneration in patients with Parkinson's disease by voxel‐based morphometry, cortical folding, and cortical thickness , 2012, Human brain mapping.

[117]  G. Glover Overview of functional magnetic resonance imaging. , 2011, Neurosurgery clinics of North America.

[118]  Hang Joon Jo,et al.  Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI , 2013, J. Appl. Math..

[119]  J D Bourland,et al.  Review of Patient Safety in Time‐Varying Gradient Fields , 2000, Journal of magnetic resonance imaging : JMRI.

[120]  D Perani,et al.  Diffusion tensor imaging and voxel based morphometry study in early progressive supranuclear palsy , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[121]  Bruce R. Rosen,et al.  Predicting the location of entorhinal cortex from MRI , 2009, NeuroImage.

[122]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[123]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[124]  E. Bullmore,et al.  Human brain networks in health and disease , 2009, Current opinion in neurology.

[125]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[126]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[127]  M. Mintun,et al.  Brain work and brain imaging. , 2006, Annual review of neuroscience.

[128]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[129]  Andrew Zalesky,et al.  Moderating registration misalignment in voxelwise comparisons of DTI data: a performance evaluation of skeleton projection. , 2011, Magnetic resonance imaging.

[130]  Daniel C. Alexander,et al.  Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version , 2003, IPMI.

[131]  Wei-Jia Zhong,et al.  Abnormal spontaneous brain activity in minimal hepatic encephalopathy: resting-state fMRI study. , 2016, Diagnostic and interventional radiology.

[132]  Stephen M. Smith,et al.  Advances and Pitfalls in the Analysis and Interpretation of Resting-State FMRI Data , 2010, Front. Syst. Neurosci..

[133]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[134]  J. O'Brien,et al.  Patterns of gray matter atrophy in dementia with Lewy bodies: a voxel-based morphometry study , 2011, International Psychogeriatrics.

[135]  Aapo Hyvärinen,et al.  Independent component analysis of fMRI group studies by self-organizing clustering , 2005, NeuroImage.

[136]  R. Turner,et al.  Echo‐planar imaging of diffusion and perfusion , 1991, Magnetic resonance in medicine.

[137]  O. Sporns,et al.  Identification and Classification of Hubs in Brain Networks , 2007, PloS one.

[138]  A. Abi-Dargham,et al.  194. Neuromelanin-sensitive Mri as an Early Indicator of Dopamine Dysfunction in Individuals at Risk for Psychosis , 2017 .

[139]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[140]  Bharat B. Biswal,et al.  Resting state fMRI: A personal history , 2012, NeuroImage.

[141]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[142]  P. Riederer,et al.  Neuromelanin in human dopamine neurons: Comparison with peripheral melanins and relevance to Parkinson's disease , 2005, Progress in Neurobiology.

[143]  Ahmed Ben Hamida,et al.  The influence of preprocessing steps on functional connectivity in resting state fMRI , 2016, 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP).

[144]  Yong He,et al.  Effects of Different Correlation Metrics and Preprocessing Factors on Small-World Brain Functional Networks: A Resting-State Functional MRI Study , 2012, PloS one.

[145]  Kevin Murphy,et al.  The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? , 2009, NeuroImage.

[146]  Timothy J. Gawne,et al.  Magnetic Transfer Contrast Accurately Localizes Substantia Nigra Confirmed by Histology , 2013, Biological Psychiatry.

[147]  V. Wedeen,et al.  Fiber crossing in human brain depicted with diffusion tensor MR imaging. , 2000, Radiology.

[148]  Ying Guo,et al.  A unified framework for group independent component analysis for multi-subject fMRI data , 2008, NeuroImage.

[149]  Vincent J Schmithorst,et al.  Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data , 2004, Journal of magnetic resonance imaging : JMRI.

[150]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[151]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[152]  Moo K. Chung,et al.  Deformation-based surface morphometry applied to gray matter deformation , 2003, NeuroImage.

[153]  Vadim Kuperman,et al.  Magnetic Resonance Imaging: Physical Principles and Applications , 2000 .

[154]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[155]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[156]  Kaustubh Supekar,et al.  Development of Large-Scale Functional Brain Networks in Children , 2009, NeuroImage.

[157]  Perrine Clarisse,et al.  Quantitative and reproducibility study of four tractography algorithms used in clinical routine , 2011, Journal of magnetic resonance imaging : JMRI.

[158]  J R Reichenbach,et al.  Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. , 1997, Radiology.

[159]  David L. Thomas,et al.  Evaluation of segmented 3D acquisition schemes for whole‐brain high‐resolution arterial spin labeling at 3 T , 2014, NMR in biomedicine.

[160]  Bing Wu,et al.  Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals , 2012, NeuroImage.

[161]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[162]  Max A. Viergever,et al.  The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain , 2012, NeuroImage.

[163]  Simon B. Eickhoff,et al.  One-year test–retest reliability of intrinsic connectivity network fMRI in older adults , 2012, NeuroImage.

[164]  J Tang,et al.  Improving susceptibility mapping using a threshold‐based K‐space/image domain iterative reconstruction approach , 2013, Magnetic resonance in medicine.

[165]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[166]  Jacques-Donald Tournier,et al.  Diffusion tensor imaging and beyond , 2011, Magnetic resonance in medicine.

[167]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[168]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[169]  Rupert Lanzenberger,et al.  Correlations and anticorrelations in resting-state functional connectivity MRI: A quantitative comparison of preprocessing strategies , 2009, NeuroImage.

[170]  Alan C. Evans,et al.  Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans , 2009, PloS one.

[171]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.