A medium-shifted splitting iteration method for a diagonal-plus-Toeplitz linear system from spatial fractional Schrödinger equations

The centered difference discretization of the spatial fractional coupled nonlinear Schrödinger equations obtains a discretized linear system whose coefficient matrix is the sum of a real diagonal matrix D and a complex symmetric Toeplitz matrix T̃ which is just the symmetric real Toeplitz T plus an imaginary identity matrix iI. In this study, we present a medium-shifted splitting iteration method to solve the discretized linear system, in which the fast algorithm can be utilized to solve the Toeplitz linear system. Theoretical analysis shows that the new iteration method is convergent. Moreover, the new splitting iteration method naturally leads to a preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are tighter than those of the original coefficient matrix A. Finally, compared with the other algorithms by numerical experiments, the new method is more effective.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  Gene H. Golub,et al.  Matrix computations , 1983 .

[3]  O. Axelsson Iterative solution methods , 1995 .

[4]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[5]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[6]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[9]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[10]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[11]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[12]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[13]  Jie Xin,et al.  Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[14]  M. Jeng,et al.  On the nonlocality of the fractional Schr\"{o}dinger equation , 2008, 0810.1543.

[15]  Fang Chen,et al.  On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.

[16]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[17]  M. Jeng,et al.  On the nonlocality of the fractional Schrödinger equation , 2010 .

[18]  Fang Chen,et al.  Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.

[19]  F. Demengel,et al.  Fractional Sobolev Spaces , 2012 .

[20]  Yuri Luchko Fractional Schrödinger equation for a particle moving in a potential well , 2013 .

[21]  A. Atangana,et al.  Stability and convergence of the space fractional variable-order Schrödinger equation , 2013 .

[22]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[23]  A theorem on the existence of symmetries of fractional PDEs , 2014, 1402.7204.

[24]  Wei Yang,et al.  A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations , 2014, J. Comput. Phys..

[25]  Giovanni Molica Bisci,et al.  Multiple solutions of p-biharmonic equations with Navier boundary conditions , 2014, 1608.07423.

[26]  Wei Yang,et al.  Maximum-norm error analysis of a difference scheme for the space fractional CNLS , 2015, Appl. Math. Comput..

[27]  Yu-Hong Ran,et al.  On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations , 2015, Appl. Math. Comput..

[28]  P. Pucci,et al.  Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations , 2016 .

[29]  Zhong-Zhi Bai,et al.  Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..

[30]  Giovanni Molica Bisci,et al.  Variational Methods for Nonlocal Fractional Problems , 2016 .

[31]  Vicentiu D. Rădulescu,et al.  Existence of solutions for perturbed fractional p-Laplacian equations , 2016 .

[32]  Vicentiu D. Rădulescu,et al.  Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian , 2016 .

[33]  Dušan D. Repovš,et al.  Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials , 2016, 1701.02101.

[34]  J. Giacomoni,et al.  Positive solutions of fractional elliptic equation with critical and singular nonlinearity , 2017 .

[35]  A. Jannelli,et al.  Analytical and numerical solutions of fractional type advection-diffusion equation , 2017 .

[36]  Jeffrey T. Neugebauer,et al.  Positive solutions of a singular fractional boundary value problem with a fractional boundary condition , 2017 .