RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM

The set covering problem (SCP) is one of representative combinatorial optimization problems, which has many practical applications. The continuous development of mathematical programming has derived a number of impressive heuristic algorithms as well as exact branch-and-bound algorithms, which can solve huge SCP instances of bus, railway and airline crew scheduling problems. We survey heuristic algorithms for SCP focusing mainly on contributions of mathematical programming techniques to heuristics, and illustrate their performance through experimental analysis.

[1]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[2]  Egon Balas,et al.  On the Set-Covering Problem , 1972, Oper. Res..

[3]  G. Nemhauser,et al.  Integer Programming , 2020 .

[4]  E. Balas,et al.  Set Partitioning: A survey , 1976 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[7]  Andrew C. Ho,et al.  Set covering algorithms using cutting planes, heuristics, and subgradient optimization: A computational study , 1980 .

[8]  David Avis,et al.  SET COVERING PROBLEMS , 1980 .

[9]  Reuven Bar-Yehuda,et al.  A Linear-Time Approximation Algorithm for the Weighted Vertex Cover Problem , 1981, J. Algorithms.

[10]  Dorit S. Hochbaum,et al.  Approximation Algorithms for the Set Covering and Vertex Cover Problems , 1982, SIAM J. Comput..

[11]  Andrew C. Ho Worst case analysis of a class of set covering heuristics , 1982, Math. Program..

[12]  Francis J. Vasko,et al.  An efficient heuristic for large set covering problems , 1984 .

[13]  J. Beasley An algorithm for set covering problem , 1987 .

[14]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[15]  J. Beasley A lagrangian heuristic for set‐covering problems , 1990 .

[16]  J. Dongarra Performance of various computers using standard linear equations software , 1990, CARN.

[17]  M. Fisher,et al.  Optimal solution of set covering/partitioning problems using dual heuristics , 1990 .

[18]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[19]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[20]  J. Dongarra Performance of various computers using standard linear equations software , 1990, CARN.

[21]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[22]  J. Beasley,et al.  Enhancing an algorithm for set covering problems , 1992 .

[23]  Robert E. Bixby,et al.  Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods , 1992, Oper. Res..

[24]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[25]  L. A. Lorena,et al.  A surrogate heuristic for set covering problems , 1994 .

[26]  T. Grossman,et al.  Computational Experience with Approximation Algorithms for the Set Covering Problem , 1994 .

[27]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[28]  Dag Wedelin,et al.  An algorithm for large scale 0–1 integer programming with application to airline crew scheduling , 1995, Ann. Oper. Res..

[29]  L. W. Jacobs,et al.  Note: A local-search heuristic for large set-covering problems , 1995 .

[30]  Egon Balas,et al.  A Dynamic Subgradient-Based Branch-and-Bound Procedure for Set Covering , 1992, Oper. Res..

[31]  David P. Williamson,et al.  Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover , 1993, ICALP.

[32]  K. Al-Sultan,et al.  A Genetic Algorithm for the Set Covering Problem , 1996 .

[33]  D. Hochbaum Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems , 1996 .

[34]  Toshihide Ibaraki,et al.  Logical analysis of numerical data , 1997, Math. Program..

[35]  Salim Haddadi,et al.  Simple Lagrangian heuristic for the set covering problem , 1997 .

[36]  U. Feige A threshold of ln n for approximating set cover , 1998, JACM.

[37]  Antonio Sassano,et al.  A Lagrangian-based heuristic for large-scale set covering problems , 1998, Math. Program..

[38]  Michael J. Brusco,et al.  A morphing procedure to supplement a simulated annealing heuristic for cost‐ andcoverage‐correlated set‐covering problems , 1999, Ann. Oper. Res..

[39]  Matteo Fischetti,et al.  A Heuristic Method for the Set Covering Problem , 1999, Oper. Res..

[40]  Matteo Fischetti,et al.  Algorithms for the Set Covering Problem , 2000, Ann. Oper. Res..

[41]  Luca Trevisan,et al.  Non-approximability results for optimization problems on bounded degree instances , 2001, STOC '01.

[42]  Marek Chrobak,et al.  Probe selection algorithms with applications in the analysis of microbial communities , 2001, ISMB.

[43]  Chul-Young Byun Lower Bounds for Large-Scale Set Partitioning Problems , 2001 .

[44]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[45]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[46]  M. Guignard Lagrangean relaxation , 2003 .

[47]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[48]  Toshihide Ibaraki,et al.  A 3-flip neighborhood local search for the set covering problem , 2006, Eur. J. Oper. Res..

[49]  Panos M. Pardalos,et al.  Experimental Analysis of Approximation Algorithms for the Vertex Cover and Set Covering Problems , 2006, Comput. Oper. Res..

[50]  Marco Caserta,et al.  Tabu Search-Based Metaheuristic Algorithm for Large-scale Set Covering Problems , 2007, Metaheuristics.