Aerosol‐associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo

The large amount of sulfuric acid aerosol formed in the stratosphere by conversion of sulfur dioxide emitted by the eruption of Mount Pinatubo (15.14{degrees}N, 120.35{degrees}E) in the Philippines around June 15, 1991, has had a pronounced effect on lower stratospheric ozone in the tropics. Measurements of stratospheric ozone in the tropics using electrochemical concentration cell (ECC) sondes before and after the eruption and the airborne UV differential absorption lidar (DIAL) system after the eruption are compared with Stratospheric Aerosol and Gas Experiment II (SAGE II) measurements from several years before the eruption and ECC sonde measurements from the year prior to the eruption to determine the resulting changes. Ozone decreases of up to 33% compared with SAGE II climatological values were found to be directly correlated with altitude regions of enhanced aerosol loading in the 16- to 28-km range. A maximum partial-column decrease of 29{+-}9 Dobson units (DU) was found over the 16- to 28-km range in September 1991 along with small increase (to 5.9{+-}2 DU) from 28 to 31.5 km. A large decrease of ozone was also found at 4{degrees} to 8{degrees}S from May to August 1992, with a maximum decrease of 33{+-}7 DU found above Brazzaville in July.more » Aerosol data from the visible channel of the advanced very high resolution radiometer (AVHRR) and the visible wavelength of the UV DIAL system were used to examine the relationship between aerosol (surface area) densities and ozone changes. The tropical stratospheric ozone changes we observed in 1991 and 1992 are likely be explained by a combination of dynamical (vertical transport) perturbations, radiative perturbations on ozone photochemistry, and heterogeneous chemistry. 79 refs., 8 figs., 3 tabs.« less

[1]  Robert A. Barnes,et al.  Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989 , 1995 .

[2]  E. Mahieu,et al.  Heterogeneous conversion of N2O5 to HNO3 in the post‐Mount Pinatubo eruption stratosphere , 1994 .

[3]  W. Grant,et al.  Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo , 1994 .

[4]  M. McCormick,et al.  Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo , 1994 .

[5]  V. Rizi,et al.  An Estimate of the Chemical and Radiative Perturbation of Stratospheric Ozone Following the Eruption of Mt. Pinatubo , 1993 .

[6]  W. Grant,et al.  Ozone and Aerosol Changes During the 1991-1992 Airborne Arctic Stratospheric Expedition , 1993, Science.

[7]  S. Oltmans,et al.  Ozonesonde measurements at Hilo, Hawaii following the eruption of Pinatubo , 1993 .

[8]  J. Herman,et al.  Ozone depletion at northern and southern latitudes derived from January 1979 to December 1991 Total Ozone Mapping Spectrometer data , 1993 .

[9]  R. Mcpeters,et al.  Errors and ozone measurement , 1993, Nature.

[10]  Alyn Lambert,et al.  Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS , 1993 .

[11]  R. Ferrare,et al.  Raman dial measurements of stratospheric ozone in the presence of volcanic aerosols , 1993 .

[12]  S. Solomon,et al.  Increased chlorine dioxide over Antarctica caused by volcanic aerosols from Mount Pinatubo , 1993, Nature.

[13]  A. J. Miller,et al.  Record Low Global Ozone in 1992 , 1993, Science.

[14]  J. Pyle,et al.  Role of sulphur photochemistry in tropical ozone changes after the eruption of Mount Pinatubo , 1993, Nature.

[15]  F. Mims Satellite ozone monitoring error , 1993, Nature.

[16]  S. Bekki,et al.  A model study of ATMOS observations and the heterogeneous loss of N2O5 by the sulphate aerosol layer , 1993 .

[17]  P. Bhartia,et al.  Tropical ozone loss following the eruption of Mt. Pinatubo , 1993 .

[18]  S. Chandra Changes in stratospheric ozone and temperature due to the eruptions of Mt. Pinatubo , 1993 .

[19]  M. Prather,et al.  Buffering of stratospheric circulation by changing amounts of tropical ozone a Pinatubo Case Study , 1992 .

[20]  D. Wuebbles,et al.  Effects of the Mt. Pinatubo eruption on the chemistry, radiative, and transport processes in the stratosphere , 1992 .

[21]  S. Solomon,et al.  Observation and possible causes of new ozone depletion in Antarctica in 1991 , 1992, Nature.

[22]  G. Brasseur,et al.  Mount Pinatubo Aerosols, Chlorofluorocarbons, and Ozone Depletion , 1992, Science.

[23]  E. Browell,et al.  Correction of DIAL Stratospheric Ozone Measurements in the Presence of Pinatubo Aerosols , 1992 .

[24]  G. Visconti,et al.  Radiative perturbation due to the eruption of El Chichón : effects on ozone , 1992 .

[25]  M. Prather Catastrophic loss of stratospheric ozone in dense volcanic clouds , 1992 .

[26]  Robert E. Veiga,et al.  Observations of reduced ozone concentrations in the tropical stratosphere after the eruption of Mt. Pinatubo , 1992 .

[27]  J. Fishman,et al.  Distribution of tropospheric ozone in the tropics from satellite and ozonesonde measurements , 1992 .

[28]  D. Rind,et al.  Climate change and the middle atmosphere. II - The impact of volcanic aerosols , 1992 .

[29]  William P. Chu,et al.  Stratospheric ozone profile and total ozone trends derived from the SAGE I and SAGE II data , 1992 .

[30]  Charles R. Trepte,et al.  Tropical stratospheric circulation deduced from satellite aerosol data , 1992, Nature.

[31]  Robert E. Veiga,et al.  SAGE II measurements of early Pinatubo aerosols , 1992 .

[32]  Steven Ryan,et al.  Early lidar observations of the June 1991 Pinatubo eruption plume at Mauna Loa Observatory, Hawaii , 1992 .

[33]  Paul Pellegrino,et al.  Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data , 1992 .

[34]  Francisco P. J. Valero,et al.  Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud‐derived particle sizes, columnar mass loadings, and effects on planetary albedo , 1992 .

[35]  M. T. Osborn,et al.  Airborne lidar observations of the Pinatubo volcanic plume , 1992 .

[36]  Bryan J. Johnson,et al.  Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyomi , 1992 .

[37]  Arlin J. Krueger,et al.  Global tracking of the SO2 clouds from the June , 1992 .

[38]  Richard S. Stolarski,et al.  Recent trends in stratospheric total ozone: Implications of dynamical and El Chichon perturbations , 1991 .

[39]  M. Ko,et al.  Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses , 1991, Nature.

[40]  V. Kirchhoff,et al.  Ozone climatology at Natal, Brazil, from in situ ozonesonde data , 1991 .

[41]  M. McCormick,et al.  Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide , 1991 .

[42]  G. Visconti,et al.  Sensitivity of stratospheric ozone to heterogeneous chemistry on sulfate aerosols , 1991 .

[43]  M. McCormick,et al.  Stratospheric Aerosol and Gas Experiment II and ROCOZ‐A ozone profiles at Natal, Brazil: A basis for comparison with other satellite instruments , 1991 .

[44]  H. Jäger,et al.  Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987. , 1991, Applied optics.

[45]  H. Jäger,et al.  Stratospheric ozone depletion at northern midlatitudes after major volcanic eruptions , 1990 .

[46]  A. Tuck,et al.  Airborne lidar observations in the wintertime Arctic stratosphere: Ozone , 1990 .

[47]  E. Browell,et al.  An analysis of lidar observations of polar stratospheric clouds , 1990 .

[48]  N. S. Higdon,et al.  Airborne lidar observations in the wintertime Arctic stratosphere: Polar stratospheric clouds , 1990 .

[49]  M. Allen,et al.  El Chichon volcanic aerosols: impact of radiative, thermal, and chemical perturbations. , 1989, Journal of geophysical research.

[50]  Robert E. Veiga,et al.  An overview of sage I and II ozone measurements , 1989 .

[51]  W. D. Hypes,et al.  Intercomparison of ozone measurements over Antarctica , 1989 .

[52]  K. Bowman Global patterns of the quasi-biennial oscillation in total ozone , 1989 .

[53]  Roderic L. Jones,et al.  Diagnostic studies of the Antartctic vortex during the 1987 Airborne Antarctic Ozone Experiment: Ozone miniholes , 1989 .

[54]  D. Weisenstein,et al.  The roles of dynamical and chemical processes in determining the stratospheric concentration of ozone in one-dimensional and two-dimensional models , 1989 .

[55]  Robert E. Veiga,et al.  Validation of SAGE II ozone measurements , 1989 .

[56]  William P. Chu,et al.  SAGE II inversion algorithm , 1989 .

[57]  J. Pelon,et al.  European validation of SAGE II ozone profiles , 1989 .

[58]  S. Solomon,et al.  Ozone destruction through heterogeneous chemistry following the eruption of El Chichón , 1989 .

[59]  E. V. Browell,et al.  Differential absorption lidar sensing of ozone , 1989, Proc. IEEE.

[60]  W. Grant Ozone measuring instruments for the stratosphere , 1989 .

[61]  Roderic L. Jones,et al.  Large-scale variations in ozone and polar stratospheric clouds measured with airborne lidar during formation of the 1987 ozone hole over Antarctica , 1988 .

[62]  H. Selkirk,et al.  Recent large fluctuations in total ozone , 1988 .

[63]  J. Angell An Update through 1985 of the Variations in Global Total Ozone and North Temperate Layer-Mean Ozone , 1988 .

[64]  R. Bojkov The 1983 and 1985 Anomalies in Ozone Distribution in Perspective , 1987 .

[65]  G. Fiocco,et al.  Correlated behavior of the aerosol and ozone contents of the stratosphere after the El Chichon eruption , 1987 .

[66]  M. Molina,et al.  Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range , 1986 .

[67]  C. Zerefos,et al.  The Northern Hemisphere ozone minimum in 1982–1983 , 1986 .

[68]  E. Browell,et al.  Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols. , 1985, Applied optics.

[69]  A. Bandy,et al.  Electrochemical concentration cell ozonesonde accuracy and precision , 1985 .

[70]  H. Dütsch Total Ozone Trend in the Light of Ozone Soundings, The Impact of El Chichon , 1985 .

[71]  M. P. McCormick,et al.  Satellite and correlative measurements of the stratospheric aerosol. II Comparison of measurements made by SAM II, dustsondes and airborne lidar , 1981 .

[72]  M. McCormick,et al.  Satellite studies of the stratospheric aerosol , 1979 .

[73]  G. Fiocco,et al.  Effects of radiation scattered by aerosols on the photodissociation of ozone , 1978 .

[74]  Giorgio Fiocco,et al.  Stratospheric aerosol layer during 1964 and 1965. , 1967 .

[75]  A. Pittock A Thin Stable Layer of Anomalous Ozone and Dust Content , 1966 .

[76]  A. B. PITTOCK Possible Destruction of Ozone by Volcanic Material at 50 mbar , 1965, Nature.