Modeling and simulation of spiking neural networks with resistive switching synapses

Artificial intelligence (AI) has recently reached excellent achievements in the implementation of human brain cognitive functions such as learning, recognition and inference by running intensively neural networks with deep learning on high-performance computing platforms. However, excessive computational time and power consumption required for achieving such performance make AI inefficient compared with human brain. To replicate the efficient operation of human brain in hardware, novel nanoscale memory devices such as resistive switching random access memory (RRAM) have attracted strong interest thanks to their ability to mimic biological learning in silico. In this chapter, design, modeling and simulation of RRAM-based electronic synapses capable of emulating biological learning rules are first presented. Then, the application of RRAM synapses in spiking neural networks to achieve neuromorphic tasks such as on-line learning of images and associative learning is addressed.

[1]  Sumio Hosaka,et al.  Associative memory realized by a reconfigurable memristive Hopfield neural network , 2015, Nature Communications.

[2]  Farnood Merrikh-Bayat,et al.  Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors , 2015, Scientific Reports.

[3]  Simone Balatti,et al.  A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems , 2015, Front. Neurosci..

[4]  Z. Wei,et al.  True random number generator using current difference based on a fractional stochastic model in 40-nm embedded ReRAM , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[5]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition , 2012 .

[6]  Wolfgang Maass,et al.  To Spike or Not to Spike: That Is the Question , 2015, Proc. IEEE.

[7]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[8]  Chiara Bartolozzi,et al.  Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems , 2014, Proceedings of the IEEE.

[9]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[10]  Peng Huang,et al.  Compact Model of HfOX-Based Electronic Synaptic Devices for Neuromorphic Computing , 2017, IEEE Transactions on Electron Devices.

[11]  Daniele Ielmini,et al.  Brain-Inspired Memristive Neural Networks for Unsupervised Learning , 2019, Handbook of Memristor Networks.

[12]  Vittorio Dante,et al.  A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory , 2003, IEEE Trans. Neural Networks.

[13]  Alessandro Calderoni,et al.  Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset Variability , 2014, IEEE Transactions on Electron Devices.

[14]  E. Vianello,et al.  Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting , 2016, Frontiers in neuroscience.

[15]  Suman Datta,et al.  The era of hyper-scaling in electronics , 2018, Nature Electronics.

[16]  Giacomo Indiveri,et al.  Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System , 2011, Front. Neurosci..

[17]  Giacomo Indiveri,et al.  Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[18]  Massimiliano Di Ventra,et al.  The parallel approach , 2013 .

[19]  Themis Prodromakis,et al.  Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning , 2016, Front. Neurosci..

[20]  Ya-Chin King,et al.  A Contact-Resistive Random-Access-Memory-Based True Random Number Generator , 2012, IEEE Electron Device Letters.

[21]  Shimeng Yu,et al.  A Low Energy Oxide‐Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation , 2013, Advanced materials.

[22]  Chung Lam,et al.  Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array , 2014, Front. Neurosci..

[23]  Peng Lin,et al.  Fully memristive neural networks for pattern classification with unsupervised learning , 2018 .

[24]  Giacomo Indiveri,et al.  A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses , 2015, Front. Neurosci..

[25]  Andrew Steane,et al.  Fast quantum logic gates with trapped-ion qubits , 2017, Nature.

[26]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[27]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[28]  H. Shouval What is the appropriate description level for synaptic plasticity? , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Shimeng Yu,et al.  Low-Energy Robust Neuromorphic Computation Using Synaptic Devices , 2012, IEEE Transactions on Electron Devices.

[30]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[31]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[32]  Daniele Ielmini,et al.  Resistive switching synapses for unsupervised learning in feed-forward and recurrent neural networks , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[33]  D. Querlioz,et al.  Visual Pattern Extraction Using Energy-Efficient “2-PCM Synapse” Neuromorphic Architecture , 2012, IEEE Transactions on Electron Devices.

[34]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[35]  S. Ambrogio,et al.  Analytical Modeling of Oxide-Based Bipolar Resistive Memories and Complementary Resistive Switches , 2014, IEEE Transactions on Electron Devices.

[36]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[37]  Masahide Matsumoto,et al.  A 130.7mm2 2-layer 32Gb ReRAM memory device in 24nm technology , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[38]  Alessandro Calderoni,et al.  Understanding pulsed-cycling variability and endurance in HfOx RRAM , 2015, 2015 IEEE International Reliability Physics Symposium.

[39]  Shimeng Yu,et al.  Neuro-Inspired Computing With Emerging Nonvolatile Memorys , 2018, Proceedings of the IEEE.

[40]  L. Goux,et al.  Intrinsic Tailing of Resistive States Distributions in Amorphous HfOx and TaOx Based Resistive Random Access Memories , 2015, IEEE Electron Device Letters.

[41]  Haralampos Pozidis,et al.  Phase-change memory: Feasibility of reliable multilevel-cell storage and retention at elevated temperatures , 2015, 2015 IEEE International Reliability Physics Symposium.

[42]  Philip R. Hemmer,et al.  Nitrogen-vacancy centers: Physics and applications , 2013 .

[43]  Mirko Hansen,et al.  Memristive Hebbian Plasticity Model: Device Requirements for the Emulation of Hebbian Plasticity Based on Memristive Devices , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[44]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[45]  Stefano Ambrogio,et al.  Normally-off Logic Based on Resistive Switches—Part II: Logic Circuits , 2015, IEEE Transactions on Electron Devices.

[46]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[47]  J. Preskill Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  Jiaming Zhang,et al.  Analogue signal and image processing with large memristor crossbars , 2017, Nature Electronics.

[49]  Bing Chen,et al.  Efficient in-memory computing architecture based on crossbar arrays , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[50]  Stefano Ambrogio,et al.  Neuromorphic computing with hybrid memristive/CMOS synapses for real-time learning , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[51]  R. Douglas,et al.  A silicon neuron , 1991, Nature.

[52]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[53]  Matthew Cook,et al.  Unsupervised learning of digit recognition using spike-timing-dependent plasticity , 2015, Front. Comput. Neurosci..

[54]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[55]  Chiara Bartolozzi,et al.  Synaptic Dynamics in Analog VLSI , 2007, Neural Computation.

[56]  T. Serrano-Gotarredona,et al.  STDP and STDP variations with memristors for spiking neuromorphic learning systems , 2013, Front. Neurosci..

[57]  D. Ielmini,et al.  Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[58]  Wolfgang Maass,et al.  Noise as a Resource for Computation and Learning in Networks of Spiking Neurons , 2014, Proceedings of the IEEE.

[59]  Haralampos Pozidis,et al.  Multilevel-Cell Phase-Change Memory: A Viable Technology , 2016, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[60]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[61]  Ralph,et al.  Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars , 1999, Physical review letters.

[62]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[63]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[64]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[65]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[66]  Fatemeh Hadaeghi Neuromorphic Electronic Systems for Reservoir Computing , 2019, ArXiv.

[67]  R. Stanley Williams What's Next? , 2017, Computing in Science & Engineering.

[68]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[69]  Giacomo Indiveri,et al.  Synthesizing cognition in neuromorphic electronic systems , 2013, Proceedings of the National Academy of Sciences.

[70]  D. Ielmini,et al.  Novel RRAM-enabled 1T1R synapse capable of low-power STDP via burst-mode communication and real-time unsupervised machine learning , 2016, 2016 IEEE Symposium on VLSI Technology.

[71]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[72]  Tao Wang,et al.  Deep learning with COTS HPC systems , 2013, ICML.

[73]  David A. Patterson,et al.  In-datacenter performance analysis of a tensor processing unit , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[74]  T. Yamamoto,et al.  Low-power embedded ReRAM technology for IoT applications , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[75]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[76]  C. Teuscher,et al.  Modeling and Experimental Demonstration of a Hopfield Network Analog-to-Digital Converter with Hybrid CMOS/Memristor Circuits , 2015, Front. Neurosci..

[77]  M. Wilson,et al.  NMDA receptors, place cells and hippocampal spatial memory , 2004, Nature Reviews Neuroscience.

[78]  D. Ielmini,et al.  Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[79]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[80]  Jeong-Heon Park,et al.  Dependence of Voltage and Size on Write Error Rates in Spin-Transfer Torque Magnetic Random-Access Memory , 2016, IEEE Magnetics Letters.

[81]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[82]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[83]  Xiang Fu,et al.  The engineering challenges in quantum computing , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[84]  D. Ielmini,et al.  Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[85]  Bing Chen,et al.  A SPICE Model of Resistive Random Access Memory for Large-Scale Memory Array Simulation , 2014, IEEE Electron Device Letters.

[86]  R. Feynman Simulating physics with computers , 1999 .

[87]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[88]  Alessandro Calderoni,et al.  Physical Unbiased Generation of Random Numbers With Coupled Resistive Switching Devices , 2016, IEEE Transactions on Electron Devices.

[89]  H.-S. Philip Wong,et al.  Face classification using electronic synapses , 2017, Nature Communications.

[90]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[91]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[92]  Tanja Lange,et al.  Post-quantum cryptography , 2008, Nature.

[93]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[94]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[95]  Daisuke Saida,et al.  Sub-3 ns pulse with sub-100 µA switching of 1x–2x nm perpendicular MTJ for high-performance embedded STT-MRAM towards sub-20 nm CMOS , 2016, 2016 IEEE Symposium on VLSI Technology.

[96]  Steve Furber,et al.  Large-scale neuromorphic computing systems , 2016, Journal of neural engineering.

[97]  John J. Hopfield,et al.  Searching for Memories, Sudoku, Implicit Check Bits, and the Iterative Use of Not-Always-Correct Rapid Neural Computation , 2006, Neural Computation.

[98]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[99]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[100]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[101]  R. Jordan,et al.  NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[102]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[103]  A. Sebastian,et al.  Drift-resilient cell-state metric for multilevel phase-change memory , 2011, 2011 International Electron Devices Meeting.

[104]  H.-S. Philip Wong,et al.  Phase-Change Memory—Towards a Storage-Class Memory , 2017, IEEE Transactions on Electron Devices.

[105]  Daniele Ielmini,et al.  Resistive switching memories based on metal oxides: mechanisms, reliability and scaling , 2016 .

[106]  Zhiwei Li,et al.  Binary neural network with 16 Mb RRAM macro chip for classification and online training , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[107]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[108]  H. Hwang,et al.  Excellent resistance switching characteristics of Pt/SrTiO/sub 3/ schottky junction for multi-bit nonvolatile memory application , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[109]  Richard George,et al.  Spike-driven threshold-based learning with memristive synapses and neuromorphic silicon neurons , 2018, Journal of Physics D: Applied Physics.

[110]  Gert Cauwenberghs,et al.  Log-Domain Time-Multiplexed Realization of Dynamical Conductance-Based Synapses , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[111]  W. Oliver,et al.  Materials in superconducting quantum bits , 2013 .

[112]  Alessandro Calderoni,et al.  Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM , 2016, IEEE Transactions on Electron Devices.

[113]  K. J. Kuhn,et al.  Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.

[114]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[115]  J.V. Arthur,et al.  Recurrently connected silicon neurons with active dendrites for one-shot learning , 2004 .

[116]  Dashan Shang,et al.  Resistive switching properties in oxygen-deficient Pr0.7Ca0.3MnO3 junctions with active Al top electrodes , 2009 .

[117]  Giacomo Indiveri,et al.  A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity , 2006, IEEE Transactions on Neural Networks.

[118]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[119]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[120]  Mirko Hansen,et al.  Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition , 2017, Front. Neurosci..

[121]  Zheng-Hua Tan,et al.  Pavlovian conditioning demonstrated with neuromorphic memristive devices , 2017, Scientific Reports.

[122]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[123]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[124]  Yong Liu,et al.  A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[125]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[126]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[127]  Ilia Valov,et al.  Redox‐Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale , 2014 .

[128]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[129]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[130]  Misha A. Mahowald,et al.  An Analog VLSI System for Stereoscopic Vision , 1994 .

[131]  Olivier Bichler,et al.  Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction , 2011, 2011 International Electron Devices Meeting.

[132]  V. Cros,et al.  Spin-torque building blocks. , 2014, Nature Materials.

[133]  Duane Mills,et al.  19.7 A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technology , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[134]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[135]  Yu-Fen Wang,et al.  Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device , 2015, Scientific Reports.

[136]  M. Ziegler,et al.  An Electronic Version of Pavlov's Dog , 2012 .

[137]  S. Ambrogio,et al.  Spike-timing dependent plasticity in a transistor-selected resistive switching memory , 2013, Nanotechnology.

[138]  Massimiliano Giulioni,et al.  Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems , 2015, Scientific Reports.

[139]  H. Hwang,et al.  Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures , 2008 .

[140]  Chung-Wei Hsu,et al.  Homogeneous barrier modulation of TaOx/TiO2 bilayers for ultra-high endurance three-dimensional storage-class memory , 2014, Nanotechnology.

[141]  H. Hwang,et al.  Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device , 2011, Nanotechnology.

[142]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[143]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[144]  Mu-ming Poo,et al.  Andrew Chi-Chih Yao: the future of quantum computing , 2018 .

[145]  Timothée Masquelier,et al.  Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity , 2007, PLoS Comput. Biol..

[146]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[147]  M. Kozicki,et al.  Low current resistive switching in Cu–SiO2 cells , 2008 .

[148]  Daniele Ielmini,et al.  Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications , 2017, Journal of Computational Electronics.

[149]  Chang Jung Kim,et al.  Physical electro-thermal model of resistive switching in bi-layered resistance-change memory , 2013, Scientific Reports.

[150]  B. Frey,et al.  The human splicing code reveals new insights into the genetic determinants of disease , 2015, Science.

[151]  D. Ielmini,et al.  Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation , 2007, 2007 IEEE International Electron Devices Meeting.

[152]  Shimeng Yu,et al.  A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling , 2012, 2012 International Electron Devices Meeting.

[153]  Masakazu Aono,et al.  Ultra‐Low Voltage and Ultra‐Low Power Consumption Nonvolatile Operation of a Three‐Terminal Atomic Switch , 2015, Advanced materials.

[154]  Yoon-Ha Jeong,et al.  Optimization of Conductance Change in Pr1–xCaxMnO3-Based Synaptic Devices for Neuromorphic Systems , 2015, IEEE Electron Device Letters.

[155]  Andreas Stolcke,et al.  The Microsoft 2017 Conversational Speech Recognition System , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[156]  Daniele Ielmini,et al.  Brain-inspired recurrent neural network with plastic RRAM synapses , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[157]  W. Gerstner,et al.  Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[158]  Gennadi Bersuker,et al.  A Compact Model of Program Window in HfOx RRAM Devices for Conductive Filament Characteristics Analysis , 2014, IEEE Transactions on Electron Devices.

[159]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[160]  Max G. Lagally,et al.  Semiconductor quantum dot qubits , 2013 .

[161]  J. C. Sloncxewski Current-driven excitation of magnetic multilayers , 2003 .

[162]  Giacomo Indiveri,et al.  Integration of nanoscale memristor synapses in neuromorphic computing architectures , 2013, Nanotechnology.

[163]  Stefano Ambrogio,et al.  True Random Number Generation by Variability of Resistive Switching in Oxide-Based Devices , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[164]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[165]  Frederick T. Chen,et al.  Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[166]  Alessandro Calderoni,et al.  Postcycling Degradation in Metal-Oxide Bipolar Resistive Switching Memory , 2016, IEEE Transactions on Electron Devices.

[167]  Ali Khiat,et al.  Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses , 2016, Nature Communications.

[168]  Dominique Vuillaume,et al.  Filamentary switching: synaptic plasticity through device volatility. , 2015, ACS nano.

[169]  Mark Horowitz,et al.  1.1 Computing's energy problem (and what we can do about it) , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[170]  D. Ielmini,et al.  Logic Computation in Phase Change Materials by Threshold and Memory Switching , 2013, Advanced materials.

[171]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[172]  Mostafa Rahimi Azghadi,et al.  Modeling triplet spike-timing-dependent plasticity using memristive devices , 2017 .

[173]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[174]  Shimeng Yu,et al.  Emerging Memory Technologies: Recent Trends and Prospects , 2016, IEEE Solid-State Circuits Magazine.

[175]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[176]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[177]  Patrick Camilleri,et al.  Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI , 2011, Frontiers in Neuroscience.

[178]  Wei D. Lu,et al.  Pattern recognition with memristor networks , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[179]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[180]  A. Calderoni,et al.  Performance comparison of O-based and Cu-based ReRAM for high-density applications , 2014, 2014 IEEE 6th International Memory Workshop (IMW).

[181]  Alessandro Calderoni,et al.  Voltage-Controlled Cycling Endurance of HfOx-Based Resistive-Switching Memory , 2015, IEEE Transactions on Electron Devices.

[182]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[183]  Wei Lu,et al.  The future of electronics based on memristive systems , 2018, Nature Electronics.

[184]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[185]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[186]  Alessandro Calderoni,et al.  Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses , 2018, Science Advances.

[187]  Thomas P. Parnell,et al.  Temporal correlation detection using computational phase-change memory , 2017, Nature Communications.

[188]  Paolo Fantini,et al.  Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses , 2016, Front. Neurosci..

[189]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[190]  D. Ielmini,et al.  Set Variability and Failure Induced by Complementary Switching in Bipolar RRAM , 2013, IEEE Electron Device Letters.

[191]  N. Lindner,et al.  Topological Quantum Computation—From Basic Concepts to First Experiments , 2013, Science.

[192]  M. Bear,et al.  This paper was presented at a colloquium entitled ‘ ‘ Memory : Recording Experience in Cells and Circuits , ’ ’ organized by , 1996 .

[193]  B. Babkin Conditioned Reflexes; an Investigation of the Physiological Activity of the Cerebral Cortex. , 1929 .

[194]  D. Ielmini,et al.  Modeling-based design of brain-inspired spiking neural networks with RRAM learning synapses , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[195]  Hermann Kohlstedt,et al.  A memristive plasticity model of voltage-based STDP suitable for recurrent bidirectional neural networks in the hippocampus , 2018, Scientific Reports.

[196]  Christopher D. Manning,et al.  Advances in natural language processing , 2015, Science.

[197]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[198]  Edmund T Rolls,et al.  Attractor networks , 2010 .

[199]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[200]  R. Douglas,et al.  A multi-chip pulse-based neuromorphic infrastructure and its application to a cortical model of orientation selectivity , 2006 .

[201]  D. Ielmini,et al.  Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories , 2011, Nanotechnology.

[202]  Stefano Ambrogio,et al.  Analytical Modeling of Current Overshoot in Oxide-Based Resistive Switching Memory (RRAM) , 2016, IEEE Electron Device Letters.

[203]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[204]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[205]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[206]  Frederick T. Chen,et al.  Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance , 2010, 2010 International Electron Devices Meeting.

[207]  John Shalf,et al.  Computing beyond Moore's Law , 2015, Computer.

[208]  Jeremy Levy,et al.  Materials issues for quantum computation , 2013 .

[209]  Yoshio Nishi,et al.  Model of metallic filament formation and rupture in NiO for unipolar switching , 2010 .

[210]  Tuo-Hung Hou,et al.  3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation , 2014, 2014 IEEE International Electron Devices Meeting.

[211]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[212]  R. Waser,et al.  Thermochemical resistive switching: materials, mechanisms, and scaling projections , 2011 .

[213]  Alessandro Calderoni,et al.  A 4-Transistors/1-Resistor Hybrid Synapse Based on Resistive Switching Memory (RRAM) Capable of Spike-Rate-Dependent Plasticity (SRDP) , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[214]  S. Ambrogio,et al.  Normally-off Logic Based on Resistive Switches—Part I: Logic Gates , 2015, IEEE Transactions on Electron Devices.

[215]  Giacomo Indiveri,et al.  Scaling mixed-signal neuromorphic processors to 28 nm FD-SOI technologies , 2016, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[216]  B. Gao,et al.  A Physics-Based Compact Model of Metal-Oxide-Based RRAM DC and AC Operations , 2013, IEEE Transactions on Electron Devices.

[217]  Daniele Ielmini,et al.  Physical origin of the resistance drift exponent in amorphous phase change materials , 2011 .

[218]  Thomas N. Theis,et al.  The End of Moore's Law: A New Beginning for Information Technology , 2017, Computing in Science & Engineering.

[219]  J. Pfister,et al.  A triplet spike-timing–dependent plasticity model generalizes the Bienenstock–Cooper–Munro rule to higher-order spatiotemporal correlations , 2011, Proceedings of the National Academy of Sciences.

[220]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[221]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[222]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[223]  Giacomo Indiveri,et al.  Memory and Information Processing in Neuromorphic Systems , 2015, Proceedings of the IEEE.

[224]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[225]  Alessandro Calderoni,et al.  Stochastic Learning in Neuromorphic Hardware via Spike Timing Dependent Plasticity With RRAM Synapses , 2018, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[226]  Luping Shi,et al.  Enabling an Integrated Rate-temporal Learning Scheme on Memristor , 2014, Scientific Reports.

[227]  G. Indiveri,et al.  Neuromorphic architectures for spiking deep neural networks , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[228]  Jongin Kim,et al.  Electronic system with memristive synapses for pattern recognition , 2015, Scientific Reports.

[229]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[230]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[231]  B. DeSalvo,et al.  CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (Cochlea) and visual (Retina) cognitive processing applications , 2012, 2012 International Electron Devices Meeting.

[232]  Bernard Brezzo,et al.  TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip , 2015, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[233]  Yuan Xie,et al.  A Study on Practically Unlimited Endurance of STT-MRAM , 2017, IEEE Transactions on Electron Devices.

[234]  Daniel J. Amit,et al.  Modeling brain function: the world of attractor neural networks, 1st Edition , 1989 .

[235]  F. Merrikh Bayat,et al.  Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits , 2018, Nature Communications.

[236]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[237]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[238]  D. Ielmini,et al.  Understanding cycling endurance in perpendicular spin-transfer torque (p-STT) magnetic memory , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[239]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[240]  Timothée Masquelier,et al.  Competitive STDP-Based Spike Pattern Learning , 2009, Neural Computation.

[241]  A S Spinelli,et al.  Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity , 2017, Scientific Reports.

[242]  X. Miao,et al.  Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems , 2014, Scientific Reports.

[243]  L. Chua Memristor-The missing circuit element , 1971 .

[244]  D. Ielmini,et al.  Attractor networks and associative memories with STDP learning in RRAM synapses , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[245]  Shoji Sakamoto,et al.  An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput , 2012, 2012 IEEE International Solid-State Circuits Conference.

[246]  Jiantao Zhou,et al.  Stochastic Memristive Devices for Computing and Neuromorphic Applications , 2013, Nanoscale.

[247]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[248]  Enrico Prati,et al.  Quantum neuromorphic hardware for quantum artificial intelligence , 2017 .

[249]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[250]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[251]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[252]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[253]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[254]  Pritish Narayanan,et al.  Neuromorphic computing using non-volatile memory , 2017 .

[255]  Seong-Geon Park,et al.  Impact of Oxygen Vacancy Ordering on the Formation of a Conductive Filament in $\hbox{TiO}_{2}$ for Resistive Switching Memory , 2011, IEEE Electron Device Letters.

[256]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[257]  Sachin S. Sapatnekar,et al.  Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor , 2015, Proceedings of the IEEE.

[258]  Kyeong-Sik Min,et al.  New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing , 2014 .

[259]  Walter Senn,et al.  Learning Real-World Stimuli in a Neural Network with Spike-Driven Synaptic Dynamics , 2007, Neural Computation.

[260]  Sally A. McKee,et al.  Hitting the memory wall: implications of the obvious , 1995, CARN.

[261]  Shinhyun Choi,et al.  Comprehensive physical model of dynamic resistive switching in an oxide memristor. , 2014, ACS nano.

[262]  Stefano Ambrogio,et al.  Modeling of Breakdown-Limited Endurance in Spin-Transfer Torque Magnetic Memory Under Pulsed Cycling Regime , 2018, IEEE Transactions on Electron Devices.

[263]  Rainer Waser,et al.  Phase-Change and Redox-Based Resistive Switching Memories , 2015, Proceedings of the IEEE.

[264]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[265]  D. Ielmini,et al.  Complementary switching in metal oxides: Toward diode-less crossbar RRAMs , 2011, 2011 International Electron Devices Meeting.

[266]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[267]  D. Ielmini,et al.  Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM , 2011, IEEE Transactions on Electron Devices.

[268]  Tanguy Chouard,et al.  Machine intelligence , 2015, Nature.

[269]  D. Ielmini,et al.  Physical modeling of voltage-driven resistive switching in oxide RRAM , 2012, 2012 IEEE International Integrated Reliability Workshop Final Report.

[270]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[271]  Giacomo Indiveri,et al.  A differential memristive synapse circuit for on-line learning in neuromorphic computing systems , 2017, ArXiv.