The construction of double-ended classical trajectories

Abstract Relaxation methods for constructing double-ended classical trajectories are described. We illustrate our approach with an application to a model anharmonic system, the Henon-Heiles problem. Trajectories for this model exhibit a number of interesting energy-time relationships that appear to be of general use in characterizing the dynamics.

[1]  J. Doll,et al.  Monte Carlo methods in chemistry , 1994, IEEE Computational Science and Engineering.

[2]  E. Heller,et al.  Postmodern Quantum Mechanics , 1993 .

[3]  William H. Press,et al.  Numerical recipes , 1990 .

[4]  Lawrence R. Pratt,et al.  A statistical method for identifying transition states in high dimensional problems , 1986 .

[5]  J. Straub,et al.  Global energy minimum searches using an approximate solution of the imaginary time Schroedinger equation , 1993 .

[6]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[7]  Kent R. Wilson,et al.  Shadowing, rare events, and rubber bands. A variational Verlet algorithm for molecular dynamics , 1992 .

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[10]  D. L. Freeman,et al.  Reducing Quasi-Ergodic Behavior in Monte Carlo Simulations by J-Walking: Applications to Atomic Clusters , 1990 .

[11]  J. Doll,et al.  Equilibrium and dynamical Fourier path integral methods , 2007 .

[12]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[13]  R. Elber,et al.  Self‐avoiding walk between two fixed points as a tool to calculate reaction paths in large molecular systems , 1990 .

[14]  W. Miller Semiclassical methods in chemical physics. , 1986, Science.

[15]  J. D. Doll,et al.  Extending J walking to quantum systems: Applications to atomic clusters , 1992 .