A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration

[1]  E. Roughead,et al.  The validity of the Rx-Risk Comorbidity Index using medicines mapped to the Anatomical Therapeutic Chemical (ATC) Classification System , 2018, BMJ Open.

[2]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[3]  Alioune Ngom,et al.  A review on machine learning principles for multi-view biological data integration , 2016, Briefings Bioinform..

[4]  George Hripcsak,et al.  The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug–drug interactions , 2016, Briefings Bioinform..

[5]  Stephen J Hankinson,et al.  A review for clinicians: Prostate cancer and the antineoplastic properties of metformin. , 2017, Urologic oncology.

[6]  Thomas Seidl,et al.  Using internal evaluation measures to validate the quality of diverse stream clustering algorithms , 2017, Vietnam Journal of Computer Science.

[7]  Karin M. Verspoor,et al.  A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning , 2016, BMC Systems Biology.

[8]  R. Langley,et al.  Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis , 2016, Annals of oncology : official journal of the European Society for Medical Oncology.

[9]  Jianyu Shi,et al.  Predicting existing targets for new drugs base on strategies for missing interactions , 2016, BMC Bioinformatics.

[10]  Prashant S Kharkar,et al.  Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery? , 2016, Current topics in medicinal chemistry.

[11]  Alberto Calderone,et al.  Comparing Alzheimer’s and Parkinson’s diseases networks using graph communities structure , 2016, BMC Systems Biology.

[12]  Zhiyong Lu,et al.  A survey of current trends in computational drug repositioning , 2016, Briefings Bioinform..

[13]  Rong Wang,et al.  Drug Repurposing Based on Drug–Drug Interaction , 2015, Chemical biology & drug design.

[14]  Ping Zhang,et al.  Exploring the associations between drug side-effects and therapeutic indications , 2014, J. Biomed. Informatics.

[15]  James Bailey,et al.  Standardized Mutual Information for Clustering Comparisons: One Step Further in Adjustment for Chance , 2014, ICML.

[16]  Jing Lu,et al.  A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes. , 2014, Molecular bioSystems.

[17]  Michael E Ernst,et al.  Diuretics , 2014, Journal of cardiovascular pharmacology and therapeutics.

[18]  Jagruti Patel,et al.  Systematic drug repurposing through text mining. , 2014, Methods in molecular biology.

[19]  Chao Wu,et al.  Computational drug repositioning through heterogeneous network clustering , 2013, BMC Systems Biology.

[20]  Minho Lee,et al.  Interaction network among functional drug groups , 2013, BMC Systems Biology.

[21]  Yan Zhao,et al.  Drug repositioning: a machine-learning approach through data integration , 2013, Journal of Cheminformatics.

[22]  Jie Li,et al.  Prediction of Polypharmacological Profiles of Drugs by the Integration of Chemical, Side Effect, and Therapeutic Space , 2013, J. Chem. Inf. Model..

[23]  Gang Wang,et al.  SBEToolbox: A Matlab Toolbox for Biological Network Analysis , 2013, Evolutionary bioinformatics online.

[24]  Rong Xu,et al.  Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing , 2013, BMC Bioinformatics.

[25]  Marc Weber,et al.  Dynamics of the quorum sensing switch: stochastic and non-stationary effects , 2013, BMC Systems Biology.

[26]  W. Cushman,et al.  Antihypertensive efficacy of hydrochlorothiazide vs chlorthalidone combined with azilsartan medoxomil. , 2012, The American journal of medicine.

[27]  Simone Rossi,et al.  Australian Medicines Handbook , 2012 .

[28]  Jari Tiihonen,et al.  Outcome of patients after market withdrawal of thioridazine: A retrospective analysis in a nationwide cohort , 2012, Pharmacoepidemiology and drug safety.

[29]  Ju Han Kim,et al.  Intra-relation reconstruction from inter-relation: miRNA to gene expression , 2012, 2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology.

[30]  Hua Xu,et al.  Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs , 2012, J. Am. Medical Informatics Assoc..

[31]  K. Chou,et al.  Predicting Anatomical Therapeutic Chemical (ATC) Classification of Drugs by Integrating Chemical-Chemical Interactions and Similarities , 2012, PloS one.

[32]  Haiyuan Yu,et al.  Detecting overlapping protein complexes in protein-protein interaction networks , 2012, Nature Methods.

[33]  Russ B. Altman,et al.  A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports , 2012, J. Am. Medical Informatics Assoc..

[34]  Xing-Ming Zhao,et al.  Prediction of Drug Combinations by Integrating Molecular and Pharmacological Data , 2011, PLoS Comput. Biol..

[35]  Joel Dudley,et al.  Exploiting drug-disease relationships for computational drug repositioning , 2011, Briefings Bioinform..

[36]  Michael A Crilly,et al.  Non-steroidal anti-inflammatory drug (NSAID) related inhibition of aldosterone glucuronidation and arterial dysfunction in patients with rheumatoid arthritis: a cross-sectional clinical study , 2011, BMJ Open.

[37]  Eréndira Rendón,et al.  Internal versus External cluster validation indexes , 2011 .

[38]  Fabian J. Theis,et al.  Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs , 2010, BMC Bioinformatics.

[39]  E. Diamanti-Kandarakis,et al.  Metformin in polycystic ovary syndrome , 2010, Annals of the New York Academy of Sciences.

[40]  Simon X. Yang,et al.  Self-organizing feature map for cluster analysis in multi-disease diagnosis , 2010, Expert Syst. Appl..

[41]  Yoshihiro Yamanishi,et al.  Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework , 2010, Bioinform..

[42]  Von-Wun Soo,et al.  Analysis of adverse drug reactions using drug and drug target interactions and graph-based methods , 2010, Artif. Intell. Medicine.

[43]  Joel Dudley,et al.  Network-Based Elucidation of Human Disease Similarities Reveals Common Functional Modules Enriched for Pluripotent Drug Targets , 2010, PLoS Comput. Biol..

[44]  P. Bork,et al.  A side effect resource to capture phenotypic effects of drugs , 2010, Molecular systems biology.

[45]  Ravi Iyengar,et al.  Network analyses in systems pharmacology , 2009, Bioinform..

[46]  Yanli Wang,et al.  PubChem: a public information system for analyzing bioactivities of small molecules , 2009, Nucleic Acids Res..

[47]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[48]  Cheng-Yan Kao,et al.  Ortholog-based protein-protein interaction prediction and its application to inter-species interactions , 2008, BMC Bioinformatics.

[49]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[50]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[51]  Saman K. Halgamuge,et al.  BMC Bioinformatics BioMed Central Methodology article Binning sequences using very sparse labels within a metagenome , 2008 .

[52]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[53]  Cristina Bianchi,et al.  Treating the metabolic syndrome , 2007, Expert review of cardiovascular therapy.

[54]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[55]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[56]  G. Bergus,et al.  Comparative Antihypertensive Effects of Hydrochlorothiazide and Chlorthalidone on Ambulatory and Office Blood Pressure , 2006, Hypertension.

[57]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[58]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[59]  Olivier Bodenreider,et al.  The Unified Medical Language System (UMLS): integrating biomedical terminology , 2004, Nucleic Acids Res..

[60]  Saman K. Halgamuge,et al.  An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data , 2003, Bioinform..

[61]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[62]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[63]  Martin C. Frith,et al.  SeqVISTA: a graphical tool for sequence feature visualization and comparison , 2003, BMC Bioinformatics.

[64]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[65]  S. Dongen Graph clustering by flow simulation , 2000 .

[66]  Bala Srinivasan,et al.  Dynamic self-organizing maps with controlled growth for knowledge discovery , 2000, IEEE Trans. Neural Networks Learn. Syst..

[67]  J. Reilly,et al.  Thioridazine for schizophrenia. , 2000, The Cochrane database of systematic reviews.

[68]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[69]  T. N. Palmer,et al.  Activation of erythrocyte aldose reductase in man in response to glycaemic challenge. , 1991, Diabetes research and clinical practice.

[70]  J Duhault,et al.  History and evolution of the concept of oral therapy in diabetes. , 1991, Diabetes research and clinical practice.

[71]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[72]  A. Frantz,et al.  Dopamine antagonism by thioridazine in schizophrenia. , 1975, Biological psychiatry.