Detecting heavy Higgs bosons from natural SUSY at a 100 TeV hadron collider

Supersymmetric models with radiatively-driven naturalness (RNS) enjoy low electroweak fine-tuning whilst respecting LHC search limits on gluinos and top squarks and allowing for m h (cid:39) 125 GeV. While the heavier Higgs bosons H, A may have TeV-scale masses, the SUSY conserving µ parameter must lie in the few hundred GeV range. Thus, in natural SUSY models there should occur large heavy Higgs boson branching fractions to electroweakinos, with Higgs boson decays to higgsino plus gaugino dominating when they are kinematically accessible. These SUSY decays can open up new avenues for discovery. We investigate the prospects of discovering heavy neutral Higgs bosons H and A decaying into light plus heavy chargino pairs which can yield a four isolated lepton plus missing transverse energy signature at the LHC and at a future 100 TeV pp collider. We find that discovery of heavy Higgs decay to electroweakinos via its 4 (cid:96) decay mode is very difficult at HL-LHC. For FCC-hh or SPPC, we study the H, A → SUSY reaction along with dominant physics backgrounds from the Standard Model and devise suitable selection requirements to extract a clean signal for FCC-hh or SPPC with √ s = 100 TeV, assuming an integrated luminosity of 15 ab − 1 . We find that while a conventional cut-and-count analysis yields a signal statistical significance greater than 5 σ for m A,H ∼ 1 . 1 − 1 . 65 TeV, a boosted-decision-tree analysis allows for heavy Higgs signal discovery at FCC-hh or SPPC for m A,H ∼ 1 − 2 TeV.

[1]  Deliberation Document on the 2020 update of the European Strategy for Particle Physics , 2020 .

[2]  S. Heinemeyer,et al.  MSSM Higgs boson searches at the LHC: benchmark scenarios for Run 2 and beyond , 2018, The European Physical Journal C.

[3]  C. Collaboration Search for new phenomena with the MT2 variable in the all-hadronic final state produced in proton-proton collisions at sqrt(s) = 13 TeV , 2017, 1705.04650.

[4]  J. Gainer,et al.  What hadron collider is required to discover or falsify natural supersymmetry , 2017, 1702.06588.

[5]  Robert V. Harlander,et al.  SusHi Bento: Beyond NNLO and the heavy- top limit , 2016, Comput. Phys. Commun..

[6]  C. Focke,et al.  Color-singlet production at NNLO in MCFM , 2016, The European Physical Journal C.

[7]  K. J. Bae,et al.  Implications of naturalness for the heavy Higgs bosons of supersymmetry , 2014, 1407.3853.

[8]  A. Mustafayev,et al.  Supersymmetry, naturalness and light higgsinos , 2014, 1404.1386.

[9]  Robert V. Harlander,et al.  SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM , 2012, Comput. Phys. Commun..

[10]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[11]  S. Di Vita,et al.  On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM , 2012, 1204.1016.

[12]  H. Baer,et al.  Weak Scale Supersymmetry: From Superfields to Scattering Events , 2012 .

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  Alessandro Vicini,et al.  On the generalized harmonic polylogarithms of one complex variable , 2010, Comput. Phys. Commun..

[15]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[16]  F. Moortgat,et al.  Four-lepton LHC events from MSSM Higgs boson decays into neutralino and chargino pairs , 2007, 0709.1029.

[17]  L. Ibáñez,et al.  Supersymmetric Higgs and radiative electroweak breaking , 2007 .

[18]  S. Heinemeyer,et al.  Electroweak precision observables in the minimal supersymmetric standard model , 2004, hep-ph/0412214.

[19]  R. Harlander,et al.  Higgs production and decay: analytic results at next-to-leading order QCD , 2005, hep-ph/0509189.

[20]  Alexander Belyaev,et al.  Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses , 2005, hep-ph/0504001.

[21]  R. Bonciani,et al.  Two-loop light fermion contribution to Higgs production and decays , 2004, hep-ph/0404071.

[22]  Jae Sik Lee,et al.  Supersymmetric Higgs boson decays in the MSSM with explicit CP violation , 2002, hep-ph/0204200.

[23]  P. Janot,et al.  SUSY decays of Higgs particles , 1996, hep-ph/9603368.

[24]  W. de Boer,et al.  Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP , 1991 .

[25]  Dimitri V. Nanopoulos,et al.  Probing the desert using gauge coupling unification , 1991 .

[26]  J. Gunion,et al.  Higgs bosons in supersymmetric models (III). Decays into neutralinos and charginos , 1988 .

[27]  B. Ovrut,et al.  The locally supersymmetric geometrical hierarchy model , 1983 .

[28]  J. Polchinski,et al.  Minimal Low-Energy Supergravity , 1983 .

[29]  J. Hagelin,et al.  Weak symmetry breaking by radiative corrections in broken supergravity , 1983 .

[30]  H. Nilles,et al.  Weak interaction breakdown induced by supergravity , 1983 .

[31]  L. Ibáñez Locally Supersymmetric SU(5) Grand Unification , 1982 .

[32]  Graham G. Ross,et al.  SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in GUTs , 1982 .

[33]  R. Kaul Gauge hierarchy in a supersymmetric model , 1982 .

[34]  Edward Witten,et al.  Dynamical Breaking of Supersymmetry , 1981 .