SnapToQuery: Providing Interactive Feedback during Exploratory Query Specification

A critical challenge in the data exploration process is discovering and issuing the "right" query, especially when the space of possible queries is large. This problem of exploratory query specification is exacerbated by the use of interactive user interfaces driven by mouse, touch, or next-generation, three-dimensional, motion capture-based devices; which, are often imprecise due to jitter and sensitivity issues. In this paper, we propose SnapToQuery, a novel technique that guides users through the query space by providing interactive feedback during the query specification process by "snapping" to the user's likely intended queries. These intended queries can be derived from prior query logs, or from the data itself, using methods described in this paper. In order to provide interactive response times over large datasets, we propose two data reduction techniques when snapping to these queries. Performance experiments demonstrate that our algorithms help maintain an interactive experience while allowing for accurate guidance. User studies over three kinds of devices (mouse, touch, and motion capture) show that SnapToQuery can help users specify queries quicker and more accurately; resulting in a query specification time speedup of 1.4× for mouse and touch-based devices and 2.2× for motion capture-based devices.

[1]  Patrick Baudisch,et al.  Snap-and-go: helping users align objects without the modality of traditional snapping , 2005, CHI.

[2]  Kenton O'Hara,et al.  On the naturalness of touchless: Putting the “interaction” back into NUI , 2013, TCHI.

[3]  Regan L. Mandryk,et al.  Sticky widgets: pseudo-haptic widget enhancements for multi-monitor displays , 2005, CHI Extended Abstracts.

[4]  Wolfgang Stuerzlinger,et al.  Can friction improve mouse-based text selection? , 2009, 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH).

[5]  Stratos Idreos,et al.  dbTouch in action database kernels for touch-based data exploration , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[6]  Matthew O. Ward,et al.  InterRing: an interactive tool for visually navigating and manipulating hierarchical structures , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[7]  Marian Dörk,et al.  Accentuating visualization parameters to guide exploration , 2013, CHI Extended Abstracts.

[8]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[9]  Tom G. Zimmerman,et al.  A hand gesture interface device , 1987, CHI '87.

[10]  Maureen C. Stone,et al.  Snap-dragging , 1986, SIGGRAPH.

[11]  References , 1971 .

[12]  Aniket Kittur,et al.  Kinetica: naturalistic multi-touch data visualization , 2014, CHI.

[13]  Abraham Silberschatz,et al.  DataPlay: interactive tweaking and example-driven correction of graphical database queries , 2012, UIST.

[14]  Daniel A. Keim,et al.  Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data , 2007, EuroVis.

[15]  Nick Koudas,et al.  Interactive query refinement , 2009, EDBT '09.

[16]  Tao Li,et al.  Addressing diverse user preferences in SQL-query-result navigation , 2007, SIGMOD '07.

[17]  Vagelis Hristidis,et al.  FACeTOR: cost-driven exploration of faceted query results , 2010, CIKM.

[18]  Neoklis Polyzotis,et al.  Query Recommendations for Interactive Database Exploration , 2009, SSDBM.

[19]  S. Dudoit,et al.  A prediction-based resampling method for estimating the number of clusters in a dataset , 2002, Genome Biology.

[20]  Jeffrey Heer,et al.  Scented Widgets: Improving Navigation Cues with Embedded Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Christian S. Jensen,et al.  Building Accurate 3D Spatial Networks to Enable Next Generation Intelligent Transportation Systems , 2013, 2013 IEEE 14th International Conference on Mobile Data Management.

[22]  Kellogg S. Booth,et al.  "Oh Snap" - Helping Users Align Digital Objects on Touch Interfaces , 2011, INTERACT.

[23]  Sharad Mehrotra,et al.  Efficient Query Refinement in Multimedia Databases , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[24]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[25]  Stanley B. Zdonik,et al.  Query Steering for Interactive Data Exploration , 2013, CIDR.

[26]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[27]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[28]  H. V. Jagadish,et al.  Guided Interaction: Rethinking the Query-Result Paradigm , 2011, Proc. VLDB Endow..

[29]  Arnab Nandi,et al.  Gestural Query Specification , 2013, Proc. VLDB Endow..

[30]  Andy Cockburn,et al.  Multimodal feedback for the acquisition of small targets , 2005, Ergonomics.

[31]  Graham J. Wills,et al.  High interaction graphics , 1995 .

[32]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[33]  Monica M. C. Schraefel,et al.  TouchViz: a case study comparing two interfaces for data analytics on tablets , 2013, CHI.

[34]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[35]  Mukesh K. Mohania,et al.  Retrieval]: Query formulation, search process , 2022 .