A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environment

This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment. HighlightsA framework for visual analysis of marine data in a globe platform is proposed.A GPU-based dynamic visualization method for structured data is proposed.A modified ray-casting algorithm for Argo data is proposed.

[1]  David Borland,et al.  Rainbow Color Map (Still) Considered Harmful , 2007 .

[2]  Michael P. McCann Using GeoVRML for 3D oceanographic data visualizations , 2004, Web3D '04.

[3]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[4]  Markus Hadwiger,et al.  Ovis: A Framework for Visual Analysisof Ocean Forecast Ensembles , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  Frederick C. Harris,et al.  A Survey of Visualization Techniques and Tools for Environmental Data , 2013 .

[6]  Zhenhong Du,et al.  Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering , 2015, Comput. Geosci..

[7]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[8]  S. Martin,et al.  A system for visualizing time varying oceanographic 3D data , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).

[9]  Bo Li,et al.  GPU accelerated marine data visualization method , 2014, Journal of Ocean University of China.

[10]  N. Ritter,et al.  The GeoTiff data interchange standard for raster geographic images , 1997 .

[11]  R. Stavn,et al.  Scientific Visualization of Sediment Dynamics in the Bottom Boundary Layer , 2002 .

[12]  Caiyun Zhang,et al.  Observing the coupling effect between warm pool and “rain pool” in the Pacific Ocean , 2004 .

[13]  David S. Ebert,et al.  An Atmospheric Visual Analysis and Exploration System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  David S. Ebert,et al.  A New Three-Dimensional Visualization System for Combining Aircraft and Radar Data and Its Application to RICO Observations , 2010 .

[15]  Wei Wu,et al.  GPU-accelerated SPH fluids surface reconstruction using two-level spatial uniform grids , 2016, The Visual Computer.

[16]  Wei Wu,et al.  Rapid Delaunay triangulation for randomly distributed point cloud data using adaptive Hilbert curve , 2016, Comput. Graph..

[17]  E. Newnham,et al.  The Tropical Cyclone , 1926, Nature.

[18]  Aijun Chen,et al.  Visualization of NASA campaign mission vertical profiles using Google Earth , 2009, 2009 17th International Conference on Geoinformatics.

[19]  Aijun Chen,et al.  Visualization of A-Train vertical profiles using Google Earth , 2009, Comput. Geosci..

[20]  Jianping Li,et al.  Variability of the western Pacific warm pool structure associated with El Niño , 2017, Climate Dynamics.

[21]  Bo Li,et al.  Design and implementation of a 3D ocean virtual reality and visualization engine , 2012, Journal of Ocean University of China.

[22]  El Niño and intense tropical cyclones , 2015, Nature.

[23]  Zhihan Lv,et al.  Multi-dimensional visualization of large-scale marine hydrological environmental data , 2016, Adv. Eng. Softw..

[24]  Dean Roemmich,et al.  The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program , 2009 .

[25]  Mark Gahegan,et al.  Four barriers to the development of effective exploratory visualisation tools for the geosciences , 1999, Int. J. Geogr. Inf. Sci..

[26]  F. Joseph Turk,et al.  A tropical cyclone application for virtual globes , 2011, Comput. Geosci..

[27]  R. Stewart,et al.  Introduction to physical oceanography , 2008 .

[28]  Frank Losasso,et al.  Geometry clipmaps , 2004, ACM Trans. Graph..

[29]  J. Overpeck,et al.  Climate Data Challenges in the 21st Century , 2011, Science.

[30]  Jonathan C. Roberts,et al.  Interactive visual analytics of hydrodynamic flux for the coastal zone , 2014, Environmental Earth Sciences.

[31]  Russ Rew,et al.  NetCDF: an interface for scientific data access , 1990, IEEE Computer Graphics and Applications.

[32]  Zhihan Lv,et al.  An event-driven dynamic updating method for 3D geo-databases , 2016, Geo spatial Inf. Sci..

[33]  Colin Ware,et al.  GeoZui3D: data fusion for interpreting oceanographic data , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[34]  Yunyan Du,et al.  Web-based spatiotemporal visualization of marine environment data , 2010 .

[35]  David P. Roy,et al.  Using NASA's World Wind virtual globe for interactive internet visualization of the global MODIS burned area product , 2008 .

[36]  Miguel Chover,et al.  Real-time tessellation of terrain on graphics hardware , 2012, Comput. Geosci..

[37]  Daniel Wagner Terrain Geomorphing in the Vertex Shader , 2004 .

[38]  Markus Hadwiger,et al.  A Survey of GPU-Based Large-Scale Volume Visualization , 2014, EuroVis.

[39]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[40]  Hans Hagen,et al.  In Situ Eddy Analysis in a High-Resolution Ocean Climate Model , 2016, IEEE Transactions on Visualization and Computer Graphics.

[41]  Jihad El-Sana,et al.  Seamless patches for GPU-based terrain rendering , 2009, The Visual Computer.

[42]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[43]  Helwig Hauser,et al.  Exploration of Climate Data Using Interactive Visualization , 2010 .

[44]  JungHyun Han,et al.  Multi-resolution terrain rendering with GPU tessellation , 2014, The Visual Computer.

[45]  Jihad El-Sana,et al.  A GPU persistent grid mapping for terrain rendering , 2008, The Visual Computer.

[46]  Kwan-Liu Ma,et al.  Interactive Ray Casting of Geodesic Grids , 2013, Comput. Graph. Forum.

[47]  Daniel L. Rudnick,et al.  Impacts of the 2015–2016 El Niño on the California Current System: Early assessment and comparison to past events , 2016 .

[48]  A. Sterl,et al.  Fifteen years of ocean observations with the global Argo array , 2016 .

[49]  Xiaotong Liu,et al.  Association Analysis for Visual Exploration of Multivariate Scientific Data Sets , 2016, IEEE Transactions on Visualization and Computer Graphics.

[50]  Charles R. Dyer,et al.  Interactive visualization of Earth and space science computations , 1994, Computer.

[51]  Djamchid Ghazanfarpour,et al.  A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics , 2011, Comput. Graph. Forum.

[52]  Zhenzhen Wang,et al.  A VR-Ocean system for interactive geospatial analysis and 4D visualization of the marine environment around Antarctica , 2011, Comput. Geosci..

[53]  B. Stevens,et al.  Amplification of El Niño by cloud longwave coupling to atmospheric circulation , 2016 .

[54]  Xiaoru Yuan,et al.  WYSIWYG (What You See is What You Get) Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[55]  Chaowei Phil Yang,et al.  Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes , 2011, Comput. Geosci..