On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle

Abstract The unitary extension principle $\left( \text{UEP} \right)$ by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the $\text{UEP}$ -type wavelet systems that can be extended to a Parseval wavelet frame by adding just one $\text{UEP}$ -type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators and prove that this condition is also sufficient to ensure that an extension with just two generators is possible.

[1]  Hong Oh Kim,et al.  Extensions of Bessel sequences to dual pairs of frames , 2013 .

[2]  Claus Scheiderer,et al.  A real algebra perspective on multivariate tight wavelet frames , 2012, 1202.3596.

[3]  Deguang Han,et al.  Dilations and Completions for Gabor Systems , 2009 .

[4]  Wenchang Sun,et al.  Expansion of frames to tight frames , 2009 .

[5]  O. Christensen Frames and Bases: An Introductory Course , 2008 .

[6]  I. Selesnick,et al.  Symmetric wavelet tight frames with two generators , 2004 .

[7]  Qingtang Jiang,et al.  Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators , 2003, Adv. Comput. Math..

[8]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[9]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[10]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  B. Han,et al.  SYMMETRIC TIGHT FRAMELET FILTER BANKS WITH THREE HIGH-PASS FILTERS , 2013 .

[13]  B. Han,et al.  MATRIX SPLITTING WITH SYMMETRY AND SYMMETRIC TIGHT FRAMELET FILTER BANKS WITH TWO HIGH-PASS FILTERS , 2012 .

[14]  Hong Oh Kim,et al.  Construction of Symmetric Tight Wavelet Frames from Quasi-interpolatory Subdivision Masks and their Applications , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[15]  Peter G. Casazza,et al.  Contemporary Mathematics Classes of Finite Equal Norm Parseval Frames , 2008 .

[16]  Ole Christensen,et al.  Frames and Bases , 2008 .

[17]  B. Han,et al.  Symmetric MRA tight wavelet frames with three generators and high vanishing moments , 2005 .

[18]  B. Han,et al.  SYMMETRIC MRA TIGHT WAVELET FRAMES WITH THREE GENERATORS AND HIGH VANISHING MOMENTS , 2004 .

[19]  Bin Han,et al.  Splitting a Matrix of Laurent Polynomials with Symmetry and itsApplication to Symmetric Framelet Filter Banks , 2004, SIAM J. Matrix Anal. Appl..

[20]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[21]  Petukhov,et al.  Constructive Approximation Symmetric Framelets , 2003 .

[22]  B. Han,et al.  TIGHT WAVELET FRAMES GENERATED BY THREE SYMMETRIC B-SPLINE FUNCTIONS WITH HIGH VANISHING MOMENTS , 2002 .

[23]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[24]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .