Geodesic Gaussian Processes for the Reconstruction of a Free-Form Surface

Reconstructing a free-form surface from 3-dimensional noisy measurements is a central problem in inspection, statistical quality control, and reverse engineering. We present a new method for the statistical reconstruction of a free-form surface based on 3-dimensional cloud point data. The surface is represented parameterically, with each of the three cartesian coordinates (x, y, z) a function of surface coordinates (u, v). This avoids having to choose one euclidean coordinate (say, z) as a “response” function of the other 2 coordinate “locations” (say, x and y), as commonly used in previous euclidean Kriging models of manufacturing data. In the proposed method, parameterization algorithms from the manifold learning and computer graphics literature are applied to find the (u, v) surface coordinates. These are then used as locations in a spatial Gaussian Process model that considers correlations between two points on the surface a function of their geodesic distance on the surface, rather than a function of their euclidean distances over the xy plane. It is shown how the proposed Geodesic Gaussian Process (GGP) approach better reconstructs the true surface, filtering the measurement noise, than when using a standard euclidean Kriging model of the ’heights’, i.e., z(x, y). The methodology is applied to simulated surface data and to a real dataset obtained with a non-contact laser scanner. The parametric surface representation is compatible with computer-aided-design (CAD) models and allows differential-geometry manipulations such as the computation of surface areas.

[1]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[2]  Ralph R. Martin,et al.  Noise analysis and synthesis for 3D laser depth scanners , 2009, Graph. Model..

[3]  Mikyoung Jun,et al.  Nonstationary covariance models for global data , 2008, 0901.3980.

[4]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[5]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[6]  Jack P. C. Kleijnen,et al.  Kriging in Multi-response Simulation, including a Monte Carlo Laboratory (Replaced by 2014-012) , 2012 .

[7]  Gábor Renner,et al.  Advanced surface fitting techniques , 2002, Comput. Aided Geom. Des..

[8]  Grazia Vicario,et al.  Kriging-based sequential inspection plans for coordinate measuring machines , 2009 .

[9]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[10]  Joydeep Ghosh,et al.  A Unified Model for Probabilistic Principal Surfaces , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[12]  Jianhua Z. Huang,et al.  A full scale approximation of covariance functions for large spatial data sets , 2012 .

[13]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[14]  Frank C. Curriero,et al.  On the Use of Non-Euclidean Distance Measures in Geostatistics , 2007 .

[15]  Clayton V. Deutsch,et al.  Programs for kriging and sequential Gaussian simulation with locally varying anisotropy using non-Euclidean distances , 2011, Comput. Geosci..

[16]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[17]  Yu Ding,et al.  Bayesian hierarchical model for combining misaligned two-resolution metrology data , 2011 .

[18]  N. Cressie,et al.  Spatial Statistics in the Presence of Location Error with an Application to Remote Sensing of the Environment , 2003 .

[19]  Erwin Kreyszig,et al.  Differential geometry , 1991 .

[20]  T. Gneiting,et al.  Matérn Cross-Covariance Functions for Multivariate Random Fields , 2010 .

[21]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[22]  Peter J. Diggle,et al.  Spatial prediction in the presence of positional error , 2011 .

[23]  Christopher J Paciorek,et al.  Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.

[24]  Giovanni Moroni,et al.  Performance evaluation of non contact measuring systems considering bias , 2009 .

[25]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[26]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[27]  T. Hastie Principal Curves and Surfaces , 1984 .

[28]  Massimo Pacella,et al.  From Profile to Surface Monitoring: SPC for Cylindrical Surfaces Via Gaussian Processes , 2014 .

[29]  B. Mallick,et al.  Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes , 2005 .

[30]  Haifeng Xia Bayesian Hierarchical Model for Combining Two-resolution Metrology Data , 2010 .

[31]  Søren Nymand Lophaven,et al.  Aspects of the Matlab toolbox DACE , 2002 .

[32]  Clayton V. Deutsch,et al.  Kriging in the Presence of Locally Varying Anisotropy Using Non-Euclidean Distances , 2009 .

[33]  John Noel A. C Gabrosek,et al.  The Effect on Attribute Prediction of Location Uncertainty in Spatial Data , 2002 .

[34]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[35]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[36]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[37]  Jyhwen Wang,et al.  Gaussian process method for form error assessment using coordinate measurements , 2008 .

[38]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[39]  F. Fang,et al.  Ultra-precision machining of sinusoidal surfaces using the cylindrical coordinate method , 2009 .

[40]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[41]  Weiyin Ma,et al.  Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces , 1995, Comput. Aided Des..

[42]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[43]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[44]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.