Improving the classification accuracy in chemistry via boosting technique

[1]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[2]  D. Coomans,et al.  The application of linear discriminant analysis in the diagnosis of thyroid diseases , 1978 .

[3]  J. Friedman Regularized Discriminant Analysis , 1989 .

[4]  J. Friedman Multivariate adaptive regression splines , 1990 .

[5]  Vladik Kreinovich,et al.  Arbitrary nonlinearity is sufficient to represent all functions by neural networks: A theorem , 1991, Neural Networks.

[6]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[7]  Thomas B. Blank,et al.  Adaptive, global, extended Kalman filters for training feedforward neural networks , 1994 .

[8]  Kurt Varmuza,et al.  Mass Spectral Classifiers for Supporting Systematic Structure Elucidation , 1996, J. Chem. Inf. Comput. Sci..

[9]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[10]  J. Hermens,et al.  Classifying environmental pollutants. 2: Separation of class 1 (baseline toxicity) and class 2 (‘polar narcosis’) type compounds based on chemical descriptors , 1996 .

[11]  D. Coomans,et al.  Recent developments in discriminant analysis on high dimensional spectral data , 1996 .

[12]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[13]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[14]  T. Næs,et al.  Multivariate strategies for classification based on NIR-spectra—with application to mayonnaise , 1999 .

[15]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[16]  John C. Lindon,et al.  Encyclopedia of spectroscopy and spectrometry , 2000 .

[17]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[18]  Yishay Mansour,et al.  Why averaging classifiers can protect against overfitting , 2001, AISTATS.

[19]  K. Varmuza,et al.  Feature selection by genetic algorithms for mass spectral classifiers , 2001 .

[20]  K. Varmuza,et al.  Evaluation of mass spectra from organic compounds assumed to be present in cometary grains. Exploratory data analysis , 2002 .

[21]  Jun Xu A new approach to finding natural chemical structure classes. , 2002, Journal of medicinal chemistry.