Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation

Acetylcholine (ACh) is a neuromodulatory transmitter implicated in perception and learning under uncertainty. This study combined computational simulations and pharmaco-electroencephalography in humans, to test a formulation of perceptual inference based upon the free energy principle. This formulation suggests that ACh enhances the precision of bottom-up synaptic transmission in cortical hierarchies by optimizing the gain of supragranular pyramidal cells. Simulations of a mismatch negativity paradigm predicted a rapid trial-by-trial suppression of evoked sensory prediction error (PE) responses that is attenuated by cholinergic neuromodulation. We confirmed this prediction empirically with a placebo-controlled study of cholinesterase inhibition. Furthermore, using dynamic causal modeling, we found that drug-induced differences in PE responses could be explained by gain modulation in supragranular pyramidal cells in primary sensory cortex. This suggests that ACh adaptively enhances sensory precision by boosting bottom-up signaling when stimuli are predictable, enabling the brain to respond optimally under different levels of environmental uncertainty.

[1]  K. Krnjević,et al.  Acetylcholine‐sensitive cells in the cerebral cortex , 1963, The Journal of physiology.

[2]  D. Prince,et al.  Cholinergic excitation of mammalian hippocampal pyramidal cells , 1982, Brain Research.

[3]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[4]  Roger A. Nicoll,et al.  The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells , 1984, Brain Research.

[5]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[6]  Xin-Yun Huang,et al.  Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor , 1993, Cell.

[7]  L. Cauller Layer I of primary sensory neocortex: where top-down converges upon bottom-up , 1995, Behavioural Brain Research.

[8]  M. Hasselmo,et al.  Cholinergic modulation of cortical oscillatory dynamics. , 1995, Journal of neurophysiology.

[9]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[11]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[12]  Zoubin Ghahramani,et al.  Variational Inference for Bayesian Mixtures of Factor Analysers , 1999, NIPS.

[13]  Michael Krause,et al.  A protein phosphatase is involved in the cholinergic suppression of the Ca2+-activated K+ current sI AHP in hippocampal pyramidal neurons , 2000, Neuropharmacology.

[14]  J. Coyle,et al.  Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease , 2001, Biological Psychiatry.

[15]  L. Bianchi,et al.  Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats , 2001, Neuroscience.

[16]  Peter Dayan,et al.  Expected and Unexpected Uncertainty: ACh and NE in the Neocortex , 2002, NIPS.

[17]  Peter Dayan,et al.  Acetylcholine in cortical inference , 2002, Neural Networks.

[18]  Qinying Zhao,et al.  Pharmacokinetic and Safety Assessments of Galantamine and Risperidone after the Two Drugs Are Administered Alone and Together , 2002, Journal of clinical pharmacology.

[19]  Verner J. Knott,et al.  Acute nicotine effects on auditory sensory memory in tacrine-treated and nontreated patients with Alzheimer's disease An event-related potential study , 2002, Pharmacology Biochemistry and Behavior.

[20]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[21]  P. Sah,et al.  Calcium-Activated Potassium Channels: Multiple Contributions to Neuronal Function , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[22]  Martin Radina,et al.  Galantamine Is an Allosterically Potentiating Ligand of Neuronal Nicotinic but Not of Muscarinic Acetylcholine Receptors , 2003, Journal of Pharmacology and Experimental Therapeutics.

[23]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[24]  M. Giovannini,et al.  Changes in acetylcholine extracellular levels during cognitive processes. , 2004, Learning & memory.

[25]  M. Giovannini,et al.  Changes in Acetylcholine Extracellular Levels During Cognitive Processes , 2004 .

[26]  M. Hasselmo,et al.  High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. , 2004, Progress in brain research.

[27]  L. Descarries,et al.  Acetylcholine in the cerebral cortex , 2004 .

[28]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[29]  R. Dolan,et al.  Effects of Cholinergic Enhancement on Visual Stimulation, Spatial Attention, and Spatial Working Memory , 2004, Neuron.

[30]  M. Sarter,et al.  Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex , 2005, Neuroscience.

[31]  Karl J. Friston,et al.  Applications of random field theory to electrophysiology , 2005, Neuroscience Letters.

[32]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[33]  D. Vernon,et al.  Event-Related Brain Potential Correlates of Human Auditory Sensory Memory-Trace Formation , 2005, The Journal of Neuroscience.

[34]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  Michael E. Hasselmo,et al.  Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection , 2005, Brain Research Reviews.

[36]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[37]  K. Stephan,et al.  Nicotinic modulation of human auditory sensory memory: Evidence from mismatch negativity potentials. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[38]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[39]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[40]  Karl J. Friston,et al.  Dynamic causal modelling of evoked potentials: A reproducibility study , 2007, NeuroImage.

[41]  Karl J. Friston,et al.  Canonical Source Reconstruction for MEG , 2007, Comput. Intell. Neurosci..

[42]  D. Bertrand,et al.  Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. , 2007, Annual review of pharmacology and toxicology.

[43]  Karl J. Friston,et al.  Evoked brain responses are generated by feedback loops , 2007, Proceedings of the National Academy of Sciences.

[44]  Karl J. Friston,et al.  a K.E. Stephan, a R.B. Reilly, , 2007 .

[45]  Karl J. Friston Hierarchical Models in the Brain , 2008, PLoS Comput. Biol..

[46]  G. Fink,et al.  Behavioral and Neural Effects of Nicotine on Visuospatial Attentional Reorienting in Non-Smoking Subjects , 2008, Neuropsychopharmacology.

[47]  G. Fink,et al.  Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control , 2008, Neuroscience.

[48]  Karl J. Friston,et al.  Bayesian estimation of synaptic physiology from the spectral responses of neural masses , 2008, NeuroImage.

[49]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[50]  N. Weinberger,et al.  Specific auditory memory induced by nucleus basalis stimulation depends on intrinsic acetylcholine , 2008, Neurobiology of Learning and Memory.

[51]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[52]  Karl J. Friston,et al.  The functional anatomy of the MMN: A DCM study of the roving paradigm , 2008, NeuroImage.

[53]  A. Thiele,et al.  Attention – oscillations and neuropharmacology , 2009, The European journal of neuroscience.

[54]  Karl J. Friston,et al.  Frontiers in Neuroinformatics , 2022 .

[55]  Martin Sarter,et al.  Phasic acetylcholine release and the volume transmission hypothesis: time to move on , 2009, Nature Reviews Neuroscience.

[56]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[57]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[58]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[59]  Karl J. Friston,et al.  Repetition suppression and plasticity in the human brain , 2009, NeuroImage.

[60]  R. Näätänen,et al.  Automatic auditory intelligence: An expression of the sensory–cognitive core of cognitive processes , 2010, Brain Research Reviews.

[61]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[62]  Karl J. Friston,et al.  Attention, Uncertainty, and Free-Energy , 2010, Front. Hum. Neurosci..

[63]  M. Silver,et al.  Cholinergic Enhancement Augments Magnitude and Specificity of Visual Perceptual Learning in Healthy Humans , 2010, Current Biology.

[64]  Frank Marten,et al.  Mappings between a macroscopic neural-mass model and a reduced conductance-based model , 2010, Biological Cybernetics.

[65]  J. Fadel Regulation of cortical acetylcholine release: Insights from in vivo microdialysis studies , 2011, Behavioural Brain Research.

[66]  M. Hasselmo,et al.  Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition , 2011, Neuropsychopharmacology.

[67]  Karl J. Friston,et al.  Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents , 2011, PloS one.

[68]  Karl J. Friston,et al.  Smooth Pursuit and Visual Occlusion: Active Inference and Oculomotor Control in Schizophrenia , 2012, PloS one.

[69]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.