On Discontinuous Galerkin Approximations of Boltzmann Moment Systems With Levermore Closure

Abstract This work considers the discontinuous Galerkin (DG) finite element discretization of first-order systems of conservation laws derivable as moments of the kinetic Boltzmann equation with Levermore [C.D. Levermore, Moment closure hierarchies for kinetic theories, J. Statist. Phys. 83 (5–6) (1996) 1021–1065] closure. Using standard energy analysis techniques, a new class of energy stable numerical flux functions are devised for the DG discretization of Boltzmann moment systems. Simplified energy stable numerical fluxes are then constructed which replace exact state space integration in the numerical flux with Gauss–Lobatto quadrature. Numerical results for supersonic flow over a cylinder geometry in the continuum and transitional regimes using 5 and 10 moment approximations are presented using the newly devised DG discretizations.

[1]  Thomas Sonar,et al.  Entropy production in second-order three-point schemes , 1992 .

[2]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[3]  Michael Junk Kinetic Schemes : A new Approach and Applications , 1997 .

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[6]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[7]  Henning Struchtrup,et al.  Kinetic schemes and boundary conditions for moment equations , 2000 .

[8]  M. Mock,et al.  Systems of conservation laws of mixed type , 1980 .

[9]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[10]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[11]  M. Merriam An Entropy-Based Approach to Nonlinear Stability , 1989 .

[12]  Marcello A. Anile,et al.  Two-valley Hydrodynamical Models for Electron Transport in Gallium Arsenide: Simulation of Gunn Oscillations , 2002, VLSI Design.

[13]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[14]  Timothy J. Barth,et al.  Simplified Discontinuous Galerkin Methods for Systems of Conservation Laws with Convex Extension , 2000 .

[15]  Patrick Le Tallec,et al.  Numerical Analysis of Levermore's Moment System , 1997 .

[16]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[17]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .

[18]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[19]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[20]  Michael Junk,et al.  Domain of Definition of Levermore's Five-Moment System , 1998 .

[21]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[22]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[23]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[24]  Philip L. Roe,et al.  On the nonstationary wave structure of a 35-moment closure for rarefied gas dynamics , 1995 .

[25]  Z. Banach Symmetric hyperbolic form of central-moment relativistic gas dynamics with gravitation , 2003 .

[26]  C. David Levermore,et al.  The Gaussian Moment Closure for Gas Dynamics , 1998, SIAM J. Appl. Math..

[27]  S. M. Deshpande,et al.  A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .

[28]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[29]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[30]  Christian Rohde,et al.  An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.

[31]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[32]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[33]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[34]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[35]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[36]  Maria E. Schonbek,et al.  Second-order conservative schemes and the entropy condition , 1985 .

[37]  S. M. Deshpande,et al.  On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations , 1986 .

[38]  Philippe G. LeFloch,et al.  Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..