Multi-taxa marine isoscapes provide insight into large-scale trophic dynamics in the North Pacific

[1]  Owyn E. Snodgrass,et al.  Isotopic Tracers Suggest Limited Trans-Oceanic Movements and Regional Residency in North Pacific Blue Sharks (Prionace glauca) , 2021, Frontiers in Marine Science.

[2]  P. Matich,et al.  Studying animal niches using bulk stable isotope ratios: an updated synthesis , 2020, Oecologia.

[3]  S. Ferguson,et al.  Amino acid δ15N underestimation of cetacean trophic positions highlights limited understanding of isotopic fractionation in higher marine consumers , 2020, Ecology and evolution.

[4]  S. Batten,et al.  Defining isoscapes in the Northeast Pacific as an index of ocean productivity , 2020, Global Ecology and Biogeography.

[5]  M. Heithaus,et al.  Inter-individual differences in ontogenetic trophic shifts among three marine predators , 2019, Oecologia.

[6]  Marika M. Holland,et al.  The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates , 2001, Data, Models and Analysis.

[7]  Bohyung Choi,et al.  Compression of trophic discrimination in 15N/14N within amino acids for herbivorous gastropods , 2018 .

[8]  P. Kuhnert,et al.  A global meta‐analysis of marine predator nitrogen stable isotopes: Relationships between trophic structure and environmental conditions , 2018 .

[9]  Julien M. Claes,et al.  A global perspective on the trophic geography of sharks , 2018, Nature Ecology & Evolution.

[10]  B. Robison,et al.  Deep pelagic food web structure as revealed by in situ feeding observations , 2017, Proceedings of the Royal Society B: Biological Sciences.

[11]  C. M. Kurle,et al.  Spatial and temporal variability within marine isoscapes: implications for interpreting stable isotope data from marine systems , 2017 .

[12]  P. Koch,et al.  Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel , 2001, Oecologia.

[13]  M. Berumen,et al.  Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach , 2016, Oecologia.

[14]  M. MacNeil,et al.  Expanded trophic complexity among large sharks , 2015 .

[15]  P. Kuhnert,et al.  Using stable isotopes of albacore tuna and predictive models to characterize bioregions and examine ecological change in the SW Pacific Ocean , 2015 .

[16]  K. Ekschmitt,et al.  Variability of higher trophic level stable isotope data in space and time--a case study in a marine ecosystem. , 2015, Rapid communications in mass spectrometry : RCM.

[17]  M. Winder,et al.  Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms , 2015, Oecologia.

[18]  A. Klimley,et al.  Interpreting nitrogen stable isotopes in the study of migratory fishes in marine ecosystems , 2015 .

[19]  M. Clayton,et al.  Stable Isotope Turnover and Half-Life in Animal Tissues: A Literature Synthesis , 2015, PloS one.

[20]  K. J. Goldman,et al.  Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark , 2015, Proceedings of the Royal Society B: Biological Sciences.

[21]  Owyn E. Snodgrass,et al.  Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. , 2014, Ecology.

[22]  M. MacNeil,et al.  Rescaling the trophic structure of marine food webs , 2013, Ecology letters.

[23]  Thomas R. Anderson,et al.  MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies , 2013 .

[24]  J. Harvey,et al.  Nitrogen isotope fractionation in amino acids from harbor seals: implications for compound-specific trophic position calculations , 2013 .

[25]  K. McMahon,et al.  A review of ecogeochemistry approaches to estimating movements of marine animals , 2013 .

[26]  C. Trueman,et al.  Identifying migrations in marine fishes through stable-isotope analysis. , 2012, Journal of fish biology.

[27]  D. Madigan,et al.  Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California , 2012, Proceedings of the National Academy of Sciences.

[28]  Sora L. Kim,et al.  Using Stable Isotope Analysis to Understand the Migration and Trophic Ecology of Northeastern Pacific White Sharks (Carcharodon carcharias) , 2012, PloS one.

[29]  N. Polunin,et al.  Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes , 2013, Biogeochemistry.

[30]  Akash R. Sastri,et al.  Spatial patterns in zooplankton communities across the eastern Canadian sub-Arctic and Arctic waters: insights from stable carbon (δ13C) and nitrogen (δ15N) isotope ratios , 2011 .

[31]  K. Holland,et al.  Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes , 2011 .

[32]  Andrew L Jackson,et al.  Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. , 2011, The Journal of animal ecology.

[33]  Ricardo M. Letelier,et al.  Simulating the global distribution of nitrogen isotopes in the ocean , 2010 .

[34]  B. Block,et al.  Movements of pacific bluefin tuna (Thunnus orientalis) in the Eastern North Pacific revealed with archival tags , 2010 .

[35]  Gabriel J. Bowen,et al.  Isoscapes: Spatial Pattern in Isotopic Biogeochemistry , 2010 .

[36]  Jason B. West,et al.  Isoscapes: Understanding movement, pattern, and process on earth through isotope mapping , 2010 .

[37]  Viviana A. Alder,et al.  Characteristics of suspended particulate organic matter in the southwestern Atlantic: Influence of temperature, nutrient and phytoplankton features on the stable isotope signature , 2010 .

[38]  Aaron Christ,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[39]  E. Angulo,et al.  Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction , 2009 .

[40]  S. Jennings,et al.  Body-size dependent temporal variations in nitrogen stable isotope ratios in food webs , 2008 .

[41]  S. Bunn,et al.  Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. , 2008, The Journal of animal ecology.

[42]  U. Jacob,et al.  How to account for the lipid effect on carbon stable‐isotope ratio (δ13C): sample treatment effects and model bias , 2008 .

[43]  N. Aberle,et al.  Interspecific and nutrient-dependent variations in stable isotope fractionation: experimental studies simulating pelagic multitrophic systems , 2007, Oecologia.

[44]  J. Bada,et al.  Stable isotopes, ecological integration and environmental change: wolves record atmospheric carbon isotope trend better than tree rings , 2007, Proceedings of the Royal Society B: Biological Sciences.

[45]  D. Phillips,et al.  A niche for isotopic ecology , 2007 .

[46]  Jacob E. Allgeier,et al.  Niche width collapse in a resilient top predator following ecosystem fragmentation , 2007, Ecology letters.

[47]  O. Maury,et al.  Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean , 2007 .

[48]  D. Post,et al.  Can stable isotope ratios provide for community-wide measures of trophic structure? , 2007, Ecology.

[49]  D. Post,et al.  Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses , 2007, Oecologia.

[50]  S. Jennings,et al.  Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. , 2006, Rapid communications in mass spectrometry : RCM.

[51]  David A. Siegel,et al.  Carbon‐based ocean productivity and phytoplankton physiology from space , 2005 .

[52]  R. Fuller,et al.  Determining trophic niche width: a novel approach using stable isotope analysis , 2004 .

[53]  Dustin R Rubenstein,et al.  From birds to butterflies: animal movement patterns and stable isotopes. , 2004, Trends in ecology & evolution.

[54]  C. Kendall,et al.  Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur , 2003 .

[55]  S. Jennings,et al.  Environmental correlates of large-scale spatial variation in the δ15N of marine animals , 2003 .

[56]  F. Moberg,et al.  Mobile Link Organisms and Ecosystem Functioning: Implications for Ecosystem Resilience and Management , 2003, Ecosystems.

[57]  D. Post USING STABLE ISOTOPES TO ESTIMATE TROPHIC POSITION: MODELS, METHODS, AND ASSUMPTIONS , 2002 .

[58]  A. Cohen,et al.  Interpreting stable isotopes in food webs: Recognizing the role of time averaging at different trophic levels , 2002 .

[59]  J. Rasmussen,et al.  Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies , 2001 .

[60]  Sara J. Iverson,et al.  Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue , 2001, Lipids.

[61]  K. Hobson Tracing origins and migration of wildlife using stable isotopes: a review , 1999, Oecologia.

[62]  W. Broecker,et al.  The influence of air‐sea exchange on the isotopic composition of oceanic carbon: Observations and modeling , 1995 .

[63]  R. Goericke,et al.  Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean , 1994 .

[64]  M. Pilson,et al.  Carbon isotope fractionation by marine phytoplankton in culture: The effects of CO2 concentration, pH, temperature, and species , 1994 .

[65]  E. Batschelet Circular statistics in biology , 1981 .

[66]  Y. Collos,et al.  The use of the 13C and 15N isotopes for the simultaneous measurement of carbon and nitrogen turnover rates in marine phytoplankton1 , 1977 .

[67]  M. J. Deniro,et al.  Mechanism of carbon isotope fractionation associated with lipid synthesis. , 1977, Science.

[68]  I. Kaplan,et al.  Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical north pacific ocean , 1975 .

[69]  J. Hoefs Stable Isotope Geochemistry , 1973 .

[70]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.