Factorized Graph Matching

Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem (QAP). Although widely used, solving the correspondence problem through GM has two main limitations: (1) the QAP is NP-hard and difficult to approximate; (2) GM algorithms do not incorporate geometric constraints between nodes that are natural in computer vision problems. To address aforementioned problems, this paper proposes factorized graph matching (FGM). FGM factorizes the large pairwise affinity matrix into smaller matrices that encode the local structure of each graph and the pairwise affinity between edges. Four are the benefits that follow from this factorization: (1) There is no need to compute the costly (in space and time) pairwise affinity matrix; (2) The factorization allows the use of a path-following optimization algorithm, that leads to improved optimization strategies and matching performance; (3) Given the factorization, it becomes straight-forward to incorporate geometric transformations (rigid and non-rigid) to the GM problem. (4) Using a matrix formulation for the GM problem and the factorization, it is easy to reveal commonalities and differences between different GM methods. The factorization also provides a clean connection with other matching algorithms such as iterative closest point; Experimental results on synthetic and real databases illustrate how FGM outperforms state-of-the-art algorithms for GM. The code is available at <;monospace><;uri xlink:type="simple">http://humansensing.cs.cmu.edu/fgm<;/uri><;/monospace>.

[1]  Alexei A. Efros,et al.  Discovering Texture Regularity as a Higher-Order Correspondence Problem , 2006, ECCV.

[2]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[3]  M. Zaslavskiy,et al.  A Path Following Algorithm for the Graph Matching Problem , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Yosi Keller,et al.  A Probabilistic Approach to Spectral Graph Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  João Paulo Costeira,et al.  A Global Solution to Sparse Correspondence Problems , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[7]  Martial Hebert,et al.  Efficient MAP approximation for dense energy functions , 2006, ICML.

[8]  Yosi Keller,et al.  Spectral Symmetry Analysis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[10]  Jean Ponce,et al.  A tensor-based algorithm for high-order graph matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[12]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[13]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[14]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[15]  William Brendel,et al.  Learning spatiotemporal graphs of human activities , 2011, 2011 International Conference on Computer Vision.

[16]  Stefan Carlsson,et al.  Recognizing and Tracking Human Action , 2002, ECCV.

[17]  Minsu Cho,et al.  Reweighted Random Walks for Graph Matching , 2010, ECCV.

[18]  Pradeep Ravikumar,et al.  Quadratic programming relaxations for metric labeling and Markov random field MAP estimation , 2006, ICML.

[19]  Minsu Cho,et al.  Graph Matching via Sequential Monte Carlo , 2012, ECCV.

[20]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  Martial Hebert,et al.  Beyond Local Appearance: Category Recognition from Pairwise Interactions of Simple Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Hong Qiao,et al.  An Extended Path Following Algorithm for Graph-Matching Problem , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[25]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Stella X. Yu,et al.  Linear Scale and Rotation Invariant Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  H. Bunke Graph Matching : Theoretical Foundations , Algorithms , and Applications , 2022 .

[30]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[31]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[32]  Alexander J. Smola,et al.  Learning Graph Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[34]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[35]  Minsu Cho,et al.  Progressive graph matching: Making a move of graphs via probabilistic voting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Eranda C Ela,et al.  Assignment Problems , 1964, Comput. J..

[37]  David S. Doermann,et al.  Robust point matching for nonrigid shapes by preserving local neighborhood structures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[39]  Amnon Shashua,et al.  Probabilistic graph and hypergraph matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[41]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[42]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[43]  Martial Hebert,et al.  Unsupervised Learning for Graph Matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Dale Schuurmans,et al.  Graphical Models and Point Pattern Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Philip H. S. Torr,et al.  Solving Markov Random Fields using Semi Definite Programming , 2003, AISTATS.

[46]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[47]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[48]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[49]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Edwin R. Hancock,et al.  A unified framework for alignment and correspondence , 2003, Comput. Vis. Image Underst..

[52]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[53]  M. Fukushima A modified Frank-Wolfe algorithm for solving the traffic assignment problem , 1984 .

[54]  Martial Hebert,et al.  An Integer Projected Fixed Point Method for Graph Matching and MAP Inference , 2009, NIPS.

[55]  Edwin R. Hancock,et al.  Graph Matching With a Dual-Step EM Algorithm , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[57]  Fernando De la Torre,et al.  Factorized Graph Matching , 2016, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Jianbo Shi,et al.  Balanced Graph Matching , 2006, NIPS.

[59]  Jean Ponce,et al.  A graph-matching kernel for object categorization , 2011, 2011 International Conference on Computer Vision.

[60]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[61]  Andrew W. Fitzgibbon,et al.  Robust Registration of 2D and 3D Point Sets , 2003, BMVC.

[62]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[63]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[64]  Le Song,et al.  Kernelized Sorting , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[66]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[67]  Christoph Schnörr,et al.  Evaluation of Convex Optimization Techniques for the Weighted Graph-Matching Problem in Computer Vision , 2001, DAGM-Symposium.

[68]  Amit K. Roy-Chowdhury,et al.  A “string of feature graphs” model for recognition of complex activities in natural videos , 2011, 2011 International Conference on Computer Vision.

[69]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[70]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Terry Caelli,et al.  An eigenspace projection clustering method for inexact graph matching , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Barend J. van Wyk,et al.  A POCS-Based Graph Matching Algorithm , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[74]  Salih O. Duffuaa,et al.  A Linear Programming Approach for the Weighted Graph Matching Problem , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Immanuel M. Bomze,et al.  A Global Optimization Algorithm for Concave Quadratic Programming Problems , 1993, SIAM J. Optim..

[76]  Christoph Schnörr,et al.  Probabilistic Subgraph Matching Based on Convex Relaxation , 2005, EMMCVPR.

[77]  P. Torr Geometric motion segmentation and model selection , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[78]  Yosi Keller,et al.  Efficient High Order Matching , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[80]  Francis Bach,et al.  Global alignment of protein–protein interaction networks by graph matching methods , 2009, Bioinform..

[81]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[82]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[83]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[85]  Yu Tian,et al.  On the Convergence of Graph Matching: Graduated Assignment Revisited , 2012, ECCV.

[86]  Marcello Pelillo,et al.  Replicator Equations, Maximal Cliques, and Graph Isomorphism , 1998, Neural Computation.

[87]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[88]  Jianbo Shi,et al.  Solving Markov Random Fields with Spectral Relaxation , 2007, AISTATS.