NEW APPROACHES TO PHOTOMETRIC REDSHIFT PREDICTION VIA GAUSSIAN PROCESS REGRESSION IN THE SLOAN DIGITAL SKY SURVEY

Expanding upon the work of Way and Srivastava 2006 we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u,g,r,i,z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.

[1]  Jose Luis. Sersic,et al.  Atlas de Galaxias Australes , 1968 .

[2]  V. Petrosian,et al.  Surface brightness and evolution of galaxies , 1976 .

[3]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[4]  G. Wahba Spline models for observational data , 1990 .

[5]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[6]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[9]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[10]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[11]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[12]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[13]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[14]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[15]  Neil D. Lawrence,et al.  Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.

[16]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[17]  R. Nichol,et al.  The Application of Photometric Redshifts to the SDSS Early Data Release , 2002, astro-ph/0211080.

[18]  Y. Mellier,et al.  The VIRMOS deep imaging survey - I. Overview, survey strategy, and CFH12K observations , 2004 .

[19]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004 .

[20]  Aniruddha R. Thakar,et al.  The Third Data Release of the Sloan Digital Sky Survey , 2004 .

[21]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[22]  Y. Wadadekar Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.

[23]  Bruce Margon,et al.  A Census of Object Types and Redshift Estimates in the SDSS Photometric Catalog from a Trained Decision-Tree Classifier , 2005 .

[24]  Alexander S. Szalay,et al.  Calibrating photometric redshifts of luminous red galaxies , 2005 .

[25]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[26]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[27]  M. Way,et al.  Novel Methods for Predicting Photometric Redshifts from Broadband Photometry Using Virtual Sensors , 2006 .

[28]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[29]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[30]  D. Raffaele,et al.  Mining the SDSS archive. I. Photometric redshifts in the nearby universe , 2007, astro-ph/0703108.

[31]  Yong-Heng Zhao,et al.  Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS , 2007, 0707.2250.

[32]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[33]  Michael J. Kurtz,et al.  μ-PhotoZ: Photometric Redshifts by Inverting the Tolman Surface Brightness Test , 2007, 0707.0484.

[34]  G. Longo,et al.  Mining the SDSS Archive. I. Photometric Redshifts in the Nearby Universe , 2007 .

[35]  A. Connolly,et al.  Photometric redshifts with surface brightness priors , 2007, 0712.1594.

[36]  J. Gunn,et al.  A New Technique for Galaxy Photometric Redshifts in the Sloan Digital Sky Survey , 2007, 0707.3443.

[37]  Robert J. Brunner,et al.  Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.

[38]  Ashok Srivastava,et al.  Stable and Efficient Gaussian Process Calculations , 2009, J. Mach. Learn. Res..

[39]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[40]  M. Hasler,et al.  A lower bound for algebraic connectivity based on the connection-graph-stability method , 2009, 0909.2782.

[41]  Jia-Sheng Huang,et al.  Photometric redshifts of galaxies from SDSS and 2MASS , 2009 .

[42]  G. Richards,et al.  ASTROMETRIC REDSHIFTS FOR QUASARS , 2009, 0904.3909.

[43]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.