NEW APPROACHES TO PHOTOMETRIC REDSHIFT PREDICTION VIA GAUSSIAN PROCESS REGRESSION IN THE SLOAN DIGITAL SKY SURVEY
暂无分享,去创建一个
[1] Jose Luis. Sersic,et al. Atlas de Galaxias Australes , 1968 .
[2] V. Petrosian,et al. Surface brightness and evolution of galaxies , 1976 .
[3] F. Girosi,et al. Networks for approximation and learning , 1990, Proc. IEEE.
[4] G. Wahba. Spline models for observational data , 1990 .
[5] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[6] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[7] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[8] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[9] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[10] V. Narayanan,et al. Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.
[11] John E. Davis,et al. Sloan Digital Sky Survey: Early Data Release , 2002 .
[12] Robert Jedicke,et al. Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.
[13] V. Narayanan,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.
[14] Bhasker K. Moorthy,et al. The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.
[15] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[16] M. Giavalisco,et al. The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.
[17] R. Nichol,et al. The Application of Photometric Redshifts to the SDSS Early Data Release , 2002, astro-ph/0211080.
[18] Y. Mellier,et al. The VIRMOS deep imaging survey - I. Overview, survey strategy, and CFH12K observations , 2004 .
[19] Walter A. Siegmund,et al. The Second Data Release of the Sloan Digital Sky Survey , 2004 .
[20] Aniruddha R. Thakar,et al. The Third Data Release of the Sloan Digital Sky Survey , 2004 .
[21] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[22] Y. Wadadekar. Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.
[23] Bruce Margon,et al. A Census of Object Types and Redshift Estimates in the SDSS Photometric Catalog from a Trained Decision-Tree Classifier , 2005 .
[24] Alexander S. Szalay,et al. Calibrating photometric redshifts of luminous red galaxies , 2005 .
[25] J. Brinkmann,et al. New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .
[26] A. Szalay,et al. The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.
[27] M. Way,et al. Novel Methods for Predicting Photometric Redshifts from Broadband Photometry Using Virtual Sensors , 2006 .
[28] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[29] M. Raddick,et al. The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.
[30] D. Raffaele,et al. Mining the SDSS archive. I. Photometric redshifts in the nearby universe , 2007, astro-ph/0703108.
[31] Yong-Heng Zhao,et al. Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS , 2007, 0707.2250.
[32] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[33] Michael J. Kurtz,et al. μ-PhotoZ: Photometric Redshifts by Inverting the Tolman Surface Brightness Test , 2007, 0707.0484.
[34] G. Longo,et al. Mining the SDSS Archive. I. Photometric Redshifts in the Nearby Universe , 2007 .
[35] A. Connolly,et al. Photometric redshifts with surface brightness priors , 2007, 0712.1594.
[36] J. Gunn,et al. A New Technique for Galaxy Photometric Redshifts in the Sloan Digital Sky Survey , 2007, 0707.3443.
[37] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.
[38] Ashok Srivastava,et al. Stable and Efficient Gaussian Process Calculations , 2009, J. Mach. Learn. Res..
[39] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[40] M. Hasler,et al. A lower bound for algebraic connectivity based on the connection-graph-stability method , 2009, 0909.2782.
[41] Jia-Sheng Huang,et al. Photometric redshifts of galaxies from SDSS and 2MASS , 2009 .
[42] G. Richards,et al. ASTROMETRIC REDSHIFTS FOR QUASARS , 2009, 0904.3909.
[43] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.