Bayesian full-waveform tomography with application to crosshole ground penetrating radar data

We present a probabilistic full-waveform inversion (FWI) approach that infers a geostatistical model along with the subsurface structure. Probabilistic FWI with Markov chain Monte Carlo (MCMC) allows for uncertainty quantification and removes the requirement of having a starting model in the cone of attraction of the assumed correct global minimum. We demonstrate our approach on a synthetic and a field data set. For the latter, we compare the results with deterministic FWI and a cone penetration test. Our results compare equally well with the cone penetration test as the deterministic results do. This is a positive result as for the deterministic inversion almost seven times more data were used than for the probabilistic inversion. Furthermore, the probabilistic FWI was able to converge to the posterior distribution starting from randomly drawn models. However, our uncertainty estimates are too narrow, because the necessarily short Markov chains implied by a computationally costly forward problem and the global nature of the model proposal scheme prevented a full exploration of the posterior probability density function. Without prior information such as borehole logs, the algorithm is only able to infer relative electric conductivity values, because the unknown amplitude of the wavelet and the mean of the conductivity are strongly correlated. This study clearly demonstrates the feasibility of probabilistic FWI and highlights the advantages and disadvantages of the approach.

[1]  Jasper A. Vrugt,et al.  Improved characterization of underground structure defects from two-stage Bayesian inversion using crosshole GPR data , 2018, Automation in Construction.

[2]  A. Malcolm,et al.  4D full-waveform metropolis hastings inversion using a local acoustic solver , 2018 .

[3]  Christian P. Robert,et al.  Accelerating MCMC algorithms , 2018, Wiley interdisciplinary reviews. Computational statistics.

[4]  Gregory Ely,et al.  Assessing uncertainties in velocity models and images with a fast nonlinear uncertainty quantification method , 2018 .

[5]  James Irving,et al.  On uncertainty quantification in hydrogeology and hydrogeophysics , 2017 .

[6]  Eric Laloy,et al.  Inference of multi-Gaussian relative permittivity fields by probabilistic inversion of crosshole ground-penetrating radar data , 2017 .

[7]  W. Mulder,et al.  A shear-wave seismic system using full-waveform inversion to look ahead of a tunnel-boring machine , 2017 .

[8]  Lars Nielsen,et al.  Full-waveform inversion of Crosshole GPR data: Implications for porosity estimation in chalk , 2017 .

[9]  M. Aleardi,et al.  1D elastic full‐waveform inversion and uncertainty estimation by means of a hybrid genetic algorithm–Gibbs sampler approach , 2017 .

[10]  Jan Vanderborght,et al.  High resolution aquifer characterization using crosshole GPR full‐waveform tomography: Comparison with direct‐push and tracer test data , 2016 .

[11]  A. Ratcliffe,et al.  Time-lapse full-waveform inversion as a reservoir-monitoring tool — A North Sea case study , 2016 .

[12]  O. Ghattas,et al.  A Bayesian approach to estimate uncertainty for full-waveform inversion using a priori information from depth migration , 2016 .

[13]  Hui Qin,et al.  Underground structure defect detection and reconstruction using crosshole GPR and Bayesian waveform inversion , 2016 .

[14]  Mrinal K. Sen,et al.  Estimating a starting model for full-waveform inversion using a global optimization method , 2016 .

[15]  N. Bienati,et al.  Estimation of acoustic macro models using a genetic full-waveform inversion: Applications to the Marmousi model , 2016 .

[16]  Gregoire Mariethoz,et al.  Merging parallel tempering with sequential geostatistical resampling for improved posterior exploration of high-dimensional subsurface categorical fields , 2016 .

[17]  Eric Laloy,et al.  Probabilistic inference of multi‐Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction , 2015 .

[18]  J. Vrugt,et al.  Summary statistics from training images as prior information in probabilistic inversion , 2015, 1701.01376.

[19]  Sébastien Lambot,et al.  Validation of Near-Field Ground-Penetrating Radar Modeling Using Full-Wave Inversion for Soil Moisture Estimation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[20]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.

[21]  Niklas Linde,et al.  3-D characterization of high-permeability zones in a gravel aquifer using 2-D crosshole GPR full-waveform inversion and waveguide detection , 2013 .

[22]  Michael H. Young,et al.  Vadose Zone Journal: The First Ten Years , 2013 .

[23]  Rémi Bardenet,et al.  Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[24]  René-Édouard Plessix,et al.  The use of low frequencies in a full‐waveform inversion and impedance inversion land seismic case study , 2013 .

[25]  Jan Dettmer,et al.  Probabilistic two-dimensional water-column and seabed inversion with self-adapting parameterizations. , 2013, The Journal of the Acoustical Society of America.

[26]  J. A. Vrugt,et al.  Distributed Soil Moisture from Crosshole Ground‐Penetrating Radar Travel Times using Stochastic Inversion , 2013, 1701.01634.

[27]  Johan Alexander Huisman,et al.  Integrated analysis of waveguide dispersed GPR pulses using deterministic and Bayesian inversion methods , 2012 .

[28]  Harry Vereecken,et al.  Quantitative conductivity and permittivity estimation using full-waveform inversion of on-ground GPR data , 2012 .

[29]  Marnik Vanclooster,et al.  Validation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping , 2012 .

[30]  T. Hansen,et al.  Monte Carlo full-waveform inversion of crosshole GPR data using multiple-point geostatistical a priori information , 2012 .

[31]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[32]  Romain Brossier,et al.  On the footprint of anisotropy on isotropic full waveform inversion: the Valhall case study , 2011 .

[33]  Niklas Linde,et al.  Full-waveform inversion of cross-hole ground-penetrating radar data to characterize a gravel aquifer close to the Thur River, Switzerland , 2010 .

[34]  A. C. Hinnell,et al.  Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion , 2010 .

[35]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[36]  Mrinal K. Sen,et al.  A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis , 2009 .

[37]  Cajo J. F. ter Braak,et al.  Differential Evolution Markov Chain with snooker updater and fewer chains , 2008, Stat. Comput..

[38]  Denes Vigh,et al.  3D prestack plane-wave, full-waveform inversion , 2008 .

[39]  Jacques R. Ernst,et al.  Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Jacques R. Ernst,et al.  Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data , 2007 .

[41]  Roussos Dimitrakopoulos,et al.  Pseudo-full-waveform inversion of borehole GPR data using stochastic tomography , 2007 .

[42]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[43]  Jean Virieux,et al.  Quantitative imaging of complex structures from dense wide‐aperture seismic data by multiscale traveltime and waveform inversions: a case study , 2004 .

[44]  Alberto Malinverno,et al.  Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes , 2004 .

[45]  Martin Musil,et al.  Effects and removal of systematic errors in crosshole georadar attenuation tomography , 2004 .

[46]  H. Maurer,et al.  Ray-based amplitude tomography for crosshole georadar data: a numerical assessment , 2001 .

[47]  H. Vereecken,et al.  Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment , 2000 .

[48]  S. Mallick Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand , 1999 .

[49]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[50]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[51]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[52]  Sam Kaplan,et al.  Low frequency full waveform seismic inversion within a tree based Bayesian framework , 2018 .

[53]  Jasper A. Vrugt,et al.  Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2016, Environ. Model. Softw..

[54]  Johan A. Huisman,et al.  Inversion and sensitivity analysis of Ground Penetrating Radar data with waveguide dispersion using deterministic and Markov Chain Monte Carlo methods , 2011 .

[55]  J. Ibrahim,et al.  Estimating Marginal Posterior Densities , 2000 .

[56]  J. Canton An Essay towards solving a Problem in the Doctrine of Chances . By the late Rev . Mr . Bayes , communicated by Mr . Price , in a letter to , 1999 .

[57]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[58]  T. Bayes LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S , 1763, Philosophical Transactions of the Royal Society of London.