Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram

[1]  anonymous In Review , 2018 .

[2]  Franklin Bien,et al.  Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays , 2018, Science Advances.

[3]  J. Hetling,et al.  Spatial maps of the sensitivity parameter I1/2 derived from multi-electrode electroretinography (meERG) responses in healthy rat eyes and eyes with experimental lesions , 2017 .

[4]  Emily M. Mugler,et al.  Corneal Potential Maps Measured With Multi-Electrode Electroretinography in Rat Eyes With Experimental Lesions. , 2017, Investigative ophthalmology & visual science.

[5]  Franklin Bien,et al.  Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics , 2017, Nature Communications.

[6]  Youngsoo Kim,et al.  Smart Contact Lenses with Graphene Coating for Electromagnetic Interference Shielding and Dehydration Protection. , 2017, ACS nano.

[7]  Takao Someya,et al.  The rise of plastic bioelectronics , 2016, Nature.

[8]  Bing Deng,et al.  Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes. , 2016, Nano letters.

[9]  Jingyu Sun,et al.  Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture , 2015, Advanced materials.

[10]  Jingyu Sun,et al.  Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. , 2015, Nano letters.

[11]  Zhigang Suo,et al.  Syringe-injectable electronics. , 2015, Nature nanotechnology.

[12]  Michael Bach,et al.  ISCEV Standard for full-field clinical electroretinography (2015 update) , 2014, Documenta Ophthalmologica.

[13]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[14]  T. Lucas,et al.  Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging , 2014, Nature Communications.

[15]  Jared P. Ness,et al.  Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications , 2014, Nature Communications.

[16]  Justin C. Williams,et al.  Spatial differences in corneal electroretinogram potentials measured in rat with a contact lens electrode array , 2014, Documenta Ophthalmologica.

[17]  Robert J. Jacobs,et al.  Electrodes for multifocal electroretinography (mfERG):a comparison of four electrodes types , 2014 .

[18]  M. Abidian,et al.  A Review of Organic and Inorganic Biomaterials for Neural Interfaces , 2014, Advanced materials.

[19]  Jang‐Ung Park,et al.  High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. , 2013, Nano letters.

[20]  D. Kaufman,et al.  Current electrophysiology in ophthalmology: a review , 2012, Current opinion in ophthalmology.

[21]  Donald C. Hood,et al.  ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition) , 2012, Documenta Ophthalmologica.

[22]  F. Carpi,et al.  Electroretinographic wet electrode. , 2009, Medical engineering & physics.

[23]  Mary A. Johnson,et al.  ISCEV standard for clinical pattern electroretinography (PERG): 2012 update , 2007, Documenta Ophthalmologica.

[24]  F. Carpi,et al.  Non-invasive electroretinography. , 2006, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[25]  Donald C Hood,et al.  The Multifocal Electroretinogram , 2003, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[26]  Masayuki Horiguchi,et al.  Stray light-induced multifocal electroretinograms. , 2003, Investigative ophthalmology & visual science.

[27]  Laurent Guyard,et al.  UV–visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation , 2002 .

[28]  S. Parks,et al.  Three-dimensional electromagnetic model of the human eye: advances towards the optimisation of electroretinographic signal detection , 1999, Medical & Biological Engineering & Computing.

[29]  L. Wachtmeister,et al.  Oscillatory potentials in the retina: what do they reveal , 1998, Progress in Retinal and Eye Research.

[30]  M. Borchert,et al.  Comparisons of contact lens, foil, fiber and skin electrodes for patterns electroretinograms , 1997, Documenta Ophthalmologica.

[31]  A. Hendrickson,et al.  Distribution of cones in human and monkey retina: individual variability and radial asymmetry. , 1987, Science.

[32]  M. Gjötterberg Electrodes for electroretinography. A comparison of four different types. , 1986, Archives of ophthalmology.

[33]  R. Plonsey,et al.  Numerical solution of the bioelectric field of the e.r.g. , 1981, Medical and Biological Engineering and Computing.

[34]  J. Dowling,et al.  The oscillatory potentials of the mudpuppy retina. , 1978, Investigative ophthalmology & visual science.

[35]  J. Dowling,et al.  Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. , 1970, Journal of neurophysiology.

[36]  M. G. Holland,et al.  THE ELECTRORETINOGRAPHIC POTENTIAL FIELD. LOCALIZATION OF RETINAL LESIONS. , 1964, American journal of ophthalmology.

[37]  E. Sundmark RECORDING OF THE HUMAN ELECTRORETINOGRAM WITH THE CONTACT GLASS , 1958 .

[38]  Jingyu Sun,et al.  Fast Growth and Broad Applications of 25‐Inch Uniform Graphene Glass , 2017, Advanced materials.

[39]  Jingyu Sun,et al.  Direct Chemical Vapor Deposition Growth of Graphene on Insulating Substrates , 2016 .

[40]  Jingyu Sun,et al.  Graphene Glass: Direct Growth of Graphene on Traditional Glasses , 2015 .

[41]  S. Andréasson,et al.  mfERG in normal and lesioned rabbit retina , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[42]  A Kriss,et al.  A comparison of flash electroretinograms recorded from Burian Allen, JET, C-glide, gold foil, DTL and skin electrodes , 1993, Eye.

[43]  Michael Bach,et al.  Principles and practice of clinical electrophysiology of vision , 1991 .

[44]  S. Cringle,et al.  The effect of a retinal lesion on the distribution of B wave potentials on the sclera. , 1987, Current eye research.