Flag Algebras: An Interim Report

For the most part, this article is a survey of concrete results in extremal combinatorics obtained with the method of flag algebras. But our survey is also preceded, interleaved and concluded with a few general digressions about the method itself. Also, instead of giving a plain and unannotated list of results, we try to divide our account into several connected stories that often include historical background, motivations and results obtained with the help of methods other than flag algebras.

[1]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[2]  Zoltán Füredi,et al.  An exact result for 3-graphs , 1984, Discret. Math..

[3]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[4]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[5]  Alexander Razborov On Turan's (3,4)-problem with forbidden configurations , 2012 .

[6]  Alexandr V. Kostochka,et al.  On Directed Triangles in Digraphs , 2007, Electron. J. Comb..

[7]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[8]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[9]  P. Erdijs ON SOME EXTREMAL PROBLEMS ON r-GRAPHS , 1971 .

[10]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[11]  Andrzej Grzesik On the maximum number of five-cycles in a triangle-free graph , 2012, J. Comb. Theory, Ser. B.

[12]  Miklós Simonovits,et al.  The Tura'n Density of the Hypergraph {abc, ade, bde, cde} , 2003, Electron. J. Comb..

[13]  Konrad Sperfeld,et al.  The inducibility of small oriented graphs , 2011 .

[14]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[15]  Richard H. Schelp,et al.  Domination in colored complete graphs , 1989, J. Graph Theory.

[16]  Paul Erdös,et al.  On some extremal problems on r-graphs , 1971, Discret. Math..

[17]  Vladimir Nikiforov On the Minimum Number of k-Cliques in Graphs with Restricted Independence Number , 2001, Comb. Probab. Comput..

[18]  Hong Liu,et al.  Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube , 2014, Eur. J. Comb..

[19]  O. L E G P I K H U,et al.  Minimum Number of k-Cliques in Graphs with Bounded Independence Number , 2013 .

[20]  Alexander A. Razborov,et al.  On 3-Hypergraphs with Forbidden 4-Vertex Configurations , 2010, SIAM J. Discret. Math..

[21]  John M. Talbot,et al.  Hypergraphs Do Jump , 2010, Combinatorics, Probability and Computing.

[22]  József Balogh,et al.  The Turan Density of Triple Systems Is Not Principal , 2002, J. Comb. Theory, Ser. A.

[23]  E. A. Nordhaus,et al.  Triangles in an Ordinary Graph , 1963, Canadian Journal of Mathematics.

[24]  Jean-Sébastien Sereni,et al.  A New Lower Bound Based on Gromov’s Method of Selecting Heavily Covered Points , 2012, Discret. Comput. Geom..

[25]  Vojtech Rödl,et al.  On the Turán Number of Triple Systems , 2002, J. Comb. Theory, Ser. A.

[26]  Jan Hladký,et al.  Non-Three-Colourable Common Graphs Exist , 2011, Combinatorics, Probability and Computing.

[27]  Oleg Pikhurko The minimum size of 3-graphs without a 4-set spanning no or exactly three edges , 2011, Eur. J. Comb..

[28]  Gary Chartrand,et al.  Erdős on Graphs : His Legacy of Unsolved Problems , 2011 .

[29]  Alexander Sidorenko,et al.  What we know and what we do not know about Turán numbers , 1995, Graphs Comb..

[30]  Ronald L. Graham,et al.  Erdős on Graphs , 2020 .

[31]  David C. Fisher Lower bounds on the number of triangles in a graph , 1989, J. Graph Theory.

[32]  P. Erdös On the structure of linear graphs , 1946 .

[33]  Fan Chung Graham,et al.  An Upper Bound for the Turán Number t3(n,4) , 1999, J. Comb. Theory, Ser. A.

[34]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[35]  VICTOR FALGAS-RAVRY,et al.  Applications of the Semi-Definite Method to the Turán Density Problem for 3-Graphs , 2013, Comb. Probab. Comput..

[36]  Oleg Pikhurko ON possible Turán densities , 2012 .

[37]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[38]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[39]  Jie Ma,et al.  A problem of Erdős on the minimum number of k-cliques , 2013, J. Comb. Theory, Ser. B.

[40]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[41]  Vladimir Nikiforov,et al.  The number of cliques in graphs of given order and size , 2007, 0710.2305.

[42]  Jan Hladký,et al.  On the number of pentagons in triangle-free graphs , 2013, J. Comb. Theory, Ser. A.

[43]  James Hirst The Inducibility of Graphs on Four Vertices , 2014, J. Graph Theory.

[44]  M. Simonovits,et al.  On the number of complete subgraphs of a graph II , 1983 .

[45]  Ervin Györi On the number of C5's in a triangle-free graph , 1989, Comb..

[46]  Vojtech Rödl,et al.  Hypergraphs do not jump , 1984, Comb..

[47]  John Adrian Bondy,et al.  Counting subgraphs a new approach to the Caccetta-Häggkvist conjecture , 1997, Discret. Math..

[48]  B. Borchers A C library for semidefinite programming , 1999 .

[49]  Emil R. Vaughan,et al.  Turán H-Densities for 3-Graphs , 2012, Electron. J. Comb..

[50]  Dhruv Mubayi,et al.  Constructions of non-principal families in extremal hypergraph theory , 2008, Discret. Math..

[51]  B. Bollobás On complete subgraphs of different orders , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[52]  W. G. Brown On an open problem of Paul Turan concerning 3-graphs , 1983 .

[53]  Paul Erdös ON SOME PROBLEMS IN GRAPH THEORY , COMBINATORIAL ANALYSIS AND COMBINATORIAL NUMBER THEORY , 2004 .

[54]  G. Chartrand,et al.  On minimal regular digraphs with given girth , 1970 .

[55]  Alexander Razborov On the Fon-Der-Flaass interpretation of extremal examples for Turán’s (3, 4)-problem , 2010 .

[56]  Alexandr V. Kostochka A class of constructions for turán’s (3, 4)-problem , 1982, Comb..

[57]  John M. Talbot,et al.  New Turán Densities for 3-Graphs , 2012, Electron. J. Comb..

[58]  Alexander Schrijver,et al.  Reduction of symmetric semidefinite programs using the regular $$\ast$$-representation , 2007, Math. Program..

[59]  Hamed Hatami,et al.  Undecidability of linear inequalities in graph homomorphism densities , 2010, 1005.2382.

[60]  A. Thomason A Disproof of a Conjecture of Erdős in Ramsey Theory , 1989 .

[61]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[62]  Z. Füredi,et al.  The number of triangles covering the center of an n-set , 1984 .

[63]  Jean-Sébastien Sereni,et al.  A New Bound for the 2/3 Conjecture , 2013, Comb. Probab. Comput..

[64]  D. Fon-Der-Flaass Method for construction of (3, 4)-graphs , 1988 .

[65]  Béla Bollobás Cycles in Dense Graphs , 1986 .

[66]  I Barany,et al.  A GENERALIZATION OF CARATHEODORYS THEOREM , 1982 .

[67]  R. Baber,et al.  Some results in extremal combinatorics , 2011 .

[68]  Alexander A. Razborov On the Caccetta-Häggkvist Conjecture with Forbidden Subgraphs , 2013, J. Graph Theory.

[69]  R. A. R. A Z B O R O V On the minimal density of triangles in graphs , 2008 .

[70]  Directed Triangles in Digraphs , 1998, J. Comb. Theory, Ser. B.

[71]  A. Goodman On Sets of Acquaintances and Strangers at any Party , 1959 .

[72]  Paul D. Seymour,et al.  Cycles in dense digraphs , 2008, Comb..