Algorithms and software tools for LMI problems in control: an overview

The purpose of this paper is to give an overview of recent developments in algorithms and software for linear matrix inequality (LMI) problems. We review the definition and some basic properties of the semidefinite programming (SDP) problem, and describe recent developments in interior point algorithms and available software. We conclude with some extensions of the SDP.

[1]  Bùi-Trong-Liêu,et al.  La mèthode des centres dans un espace topologique , 1966 .

[2]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[3]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[4]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[5]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[6]  F. Jarre An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices , 1993 .

[7]  N. Karmarkar,et al.  An O(nL) Iteration Algorithm for Computing Bounds in Quadratic Optimization Problems , 1993 .

[8]  Stephen P. Boyd,et al.  Method of centers for minimizing generalized eigenvalues , 1993, Linear Algebra and its Applications.

[9]  K. Goh,et al.  Control system synthesis via bilinear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[10]  P. Gahinet,et al.  The projective method for solving linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[11]  Y. Nesterov,et al.  Self-Scaled Cones and Interior-Point Methods in Nonlinear Programming , 1994 .

[12]  J. Ly,et al.  p/K,-Synt hesis via Bilinear Matrix Inequalities , 1994 .

[13]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[14]  G. Papavassilopoulos,et al.  A global optimization approach for the BMI problem , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[15]  L. El Ghaoui,et al.  Synthesis of fixed-structure controllers via numerical optimization , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[16]  G. Papavassilopoulos,et al.  Biaffine matrix inequality properties and computational methods , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[17]  M. Overton,et al.  Optimizing eigenvalues of symmetric definite pencils , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[18]  Leonid Faybusovich On a Matrix Generalization of Affine-Scaling Vector Fields , 1995, SIAM J. Matrix Anal. Appl..

[19]  Stephen P. Boyd,et al.  A primal—dual potential reduction method for problems involving matrix inequalities , 1995, Math. Program..

[20]  Yurii Nesterov,et al.  An interior-point method for generalized linear-fractional programming , 1995, Math. Program..

[21]  Chih-Jen Lin,et al.  A predictor corrector method for semi-definite linear programming , 1995 .

[22]  Masakazu Kojima,et al.  SDPA (SemiDefinite Programming Algorithm) User's Manual Version 6.2.0 , 1995 .

[23]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[24]  Shuzhong Zhang,et al.  Symmetric primal-dual path-following algorithms for semidefinite programming , 1999 .

[25]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[26]  J. Mitchell,et al.  A primal-dual interior-point method for linear programming based on a weighted barrier function , 1995 .

[27]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[28]  Venkataramanan Balakrishnan,et al.  Connections between duality in control theory and convex optimization , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[29]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[30]  Stephen Boyd,et al.  MAXDET: Software for Determinant Maximization Problems User's Guide , 1996 .

[31]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[32]  E. Beran Induced norm control toolbox , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[33]  Leonid Faybusovich,et al.  Semidefinite Programming: A Path-Following Algorithm for a Linear-Quadratic Functional , 1996, SIAM J. Optim..

[34]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[35]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[36]  Arkadi Nemirovski,et al.  The projective method for solving linear matrix inequalities , 1997, Math. Program..

[37]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..

[38]  Arkadi Nemirovski The long-step method of analytic centers for fractional problems , 1997, Math. Program..

[39]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[40]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[41]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[42]  Jianmin Jiang,et al.  A long-step primal-dual path-following method for semidefinite programming , 1998, Oper. Res. Lett..