Stability and motor adaptation in human arm movements

In control, stability captures the reproducibility of motions and the robustness to environmental and internal perturbations. This paper examines how stability can be evaluated in human movements, and possible mechanisms by which humans ensure stability. First, a measure of stability is introduced, which is simple to apply to human movements and corresponds to Lyapunov exponents. Its application to real data shows that it is able to distinguish effectively between stable and unstable dynamics. A computational model is then used to investigate stability in human arm movements, which takes into account motor output variability and computes the force to perform a task according to an inverse dynamics model. Simulation results suggest that even a large time delay does not affect movement stability as long as the reflex feedback is small relative to muscle elasticity. Simulations are also used to demonstrate that existing learning schemes, using a monotonic antisymmetric update law, cannot compensate for unstable dynamics. An impedance compensation algorithm is introduced to learn unstable dynamics, which produces similar adaptation responses to those found in experiments.

[1]  M. Kawato,et al.  A hierarchical neural-network model for control and learning of voluntary movement , 2004, Biological Cybernetics.

[2]  K. Newell,et al.  Noise, information transmission, and force variability. , 1999, Journal of experimental psychology. Human perception and performance.

[3]  T. Milner,et al.  Compensation for mechanically unstable loading in voluntary wrist movement , 2004, Experimental Brain Research.

[4]  Rieko Osu,et al.  Different mechanisms involved in adaptation to stable and unstable dynamics. , 2003, Journal of neurophysiology.

[5]  Theodore E. Milner,et al.  Dependence of elbow viscoelastic behavior on speed and loading in voluntary movements , 2004, Experimental Brain Research.

[6]  J. McIntyre,et al.  Servo Hypotheses for the Biological Control of Movement. , 1993, Journal of motor behavior.

[7]  K.P. Tee,et al.  How are internal models of unstable tasks formed? , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  J. Lackner,et al.  Rapid adaptation to Coriolis force perturbations of arm trajectory. , 1994, Journal of neurophysiology.

[9]  A. Prochazka,et al.  Instability in human forearm movements studied with feed‐back‐controlled electrical stimulation of muscles. , 1988, The Journal of physiology.

[10]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[11]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[12]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Robert M. Sanner,et al.  A mathematical model of the adaptive control of human arm motions , 1999, Biological Cybernetics.

[14]  Antony J. Hodgson,et al.  A model-independent definition of attractor behavior applicable to interactive tasks , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[15]  M. Kawato,et al.  Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models , 2005, Biological Cybernetics.

[16]  E. Bizzi,et al.  Neural, mechanical, and geometric factors subserving arm posture in humans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[18]  Keng Peng Tee,et al.  A model of force and impedance in human arm movements , 2004, Biological Cybernetics.

[19]  M. Kawato,et al.  Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics , 2003, Experimental Brain Research.

[20]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[21]  Eric J Perreault,et al.  Voluntary control of static endpoint stiffness during force regulation tasks. , 2002, Journal of neurophysiology.

[22]  Etienne Burdet,et al.  Quantization of human motions and learning of accurate movements , 1998, Biological Cybernetics.

[23]  R. Kearney,et al.  Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position , 2000, Experimental Brain Research.

[24]  J. Albus A Theory of Cerebellar Function , 1971 .

[25]  H. Gomi,et al.  Task-Dependent Viscoelasticity of Human Multijoint Arm and Its Spatial Characteristics for Interaction with Environments , 1998, The Journal of Neuroscience.

[26]  David J. Ostry,et al.  A critical evaluation of the force control hypothesis in motor control , 2003, Experimental Brain Research.

[27]  Rieko Osu,et al.  The central nervous system stabilizes unstable dynamics by learning optimal impedance , 2001, Nature.

[28]  N Hogan,et al.  Dynamics of Pushing , 2001, Journal of motor behavior.

[29]  Mitsuo Kawato,et al.  Human arm stiffness and equilibrium-point trajectory during multi-joint movement , 1997, Biological Cybernetics.

[30]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[31]  M. Hinder,et al.  The Case for an Internal Dynamics Model versus Equilibrium Point Control in Human Movement , 2003, The Journal of physiology.

[32]  Neville Hogan,et al.  Stability properties of human reaching movements , 2004, Experimental Brain Research.

[33]  M. Kawato,et al.  Adaptation to Stable and Unstable Dynamics Achieved By Combined Impedance Control and Inverse Dynamics Model , 2003 .

[34]  Eiichi Muramatsu,et al.  Feedback error learning control of time delay systems , 2003, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[35]  R. Shadmehr,et al.  Neural correlates of motor memory consolidation. , 1997, Science.

[36]  John W. Krakauer,et al.  Independent learning of internal models for kinematic and dynamic control of reaching , 1999, Nature Neuroscience.

[37]  R. R. Carter,et al.  Stiffness regulation by reflex action in the normal human hand. , 1990, Journal of neurophysiology.

[38]  David W Franklin,et al.  Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans , 2005, The Journal of physiology.

[39]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[40]  Reza Shadmehr,et al.  Computational nature of human adaptive control during learning of reaching movements in force fields , 1999, Biological Cybernetics.

[41]  T. Sinkjaer,et al.  Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. , 1988, Journal of neurophysiology.

[42]  E Burdet,et al.  A method for measuring endpoint stiffness during multi-joint arm movements. , 2000, Journal of biomechanics.

[43]  M. Kawato,et al.  Optimal impedance control for task achievement in the presence of signal-dependent noise. , 2004, Journal of neurophysiology.

[44]  Etienne Burdet,et al.  Experimental evaluation of nonlinear adaptive controllers , 1998 .