Hierarchical self-organizing maps for clustering spatiotemporal data

Spatial sciences are confronted with increasing amounts of high-dimensional data. These data commonly exhibit spatial and temporal dimensions. To explore, extract, and generalize inherent patterns in large spatiotemporal data sets, clustering algorithms are indispensable. These clustering algorithms must account for the distinct special properties of space and time to outline meaningful clusters in such data sets. Therefore, this research develops a hierarchical method based on self-organizing maps. The hierarchical architecture permits independent modeling of spatial and temporal dependence. To exemplify the utility of the method, this research uses an artificial data set and a socio-economic data set of the Ostregion, Austria, from the years 1961 to 2001. The results for the artificial data set demonstrate that the proposed method produces meaningful clusters that cannot be achieved when disregarding differences in spatial and temporal dependence. The results for the socio-economic data set show that the proposed method is an effective and powerful tool for analyzing spatiotemporal patterns in a regional context.

[1]  Chih-Fong Tsai,et al.  Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand , 2008, Expert Syst. Appl..

[2]  Michael J. Watts,et al.  Estimating the risk of insect species invasion: Kohonen self-organising maps versus k-means clustering. , 2009 .

[3]  D. Griffith Spatial Autocorrelation , 2020, Spatial Analysis Methods and Practice.

[4]  S. Openshaw Neuroclassification of Spatial Data , 1994 .

[5]  Adem Karahoca,et al.  Data Mining and Knowledge Discovery in Real Life Applications , 2009 .

[6]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Stan Openshaw,et al.  Census users' handbook , 1995 .

[8]  Fernando Moura-Pires,et al.  A taxonomy of Self-organizing Maps for temporal sequence processing , 2003, Intell. Data Anal..

[9]  Daniel A. Keim,et al.  Space‐in‐Time and Time‐in‐Space Self‐Organizing Maps for Exploring Spatiotemporal Patterns , 2010, Comput. Graph. Forum.

[10]  André Skupin,et al.  Visualizing Demographic Trajectories with Self-Organizing Maps , 2005, GeoInformatica.

[11]  Hermann Knoflacher,et al.  Raumstrukturelle Aspekte des Fernstraßenbaus in der Ostregion, Österreich , 2012 .

[12]  Fernando Bação,et al.  Self-organizing Maps as Substitutes for K-Means Clustering , 2005, International Conference on Computational Science.

[13]  Andreas Rauber,et al.  Uncovering hierarchical structure in data using the growing hierarchical self-organizing map , 2002, Neurocomputing.

[14]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[15]  Esa Alhoniemi,et al.  Clustering of the self-organizing map , 2000, IEEE Trans. Neural Networks Learn. Syst..

[16]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[17]  Georg Pölzlbauer Survey and Comparison of Quality Measures for Self-Organizing Maps , 2004 .

[18]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[19]  Arthur Flexer,et al.  On the use of self-organizing maps for clustering and visualization , 1999, Intell. Data Anal..

[20]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[21]  Alfred Ultsch,et al.  Self-Organizing-Feature-Maps versus Statistical Clustering Methods: A Benchmark , 1994 .

[22]  B. Hewitson,et al.  Self-organizing maps: applications to synoptic climatology , 2002 .

[23]  Andreas Rauber,et al.  Visualising Class Distribution on Self-organising Maps , 2007, ICANN.

[24]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[25]  H. R. Miller,et al.  The Data Avalanche is Here: Shouldn’t We Be Digging? , 2010 .

[26]  Jouko Lampinen,et al.  Clustering properties of hierarchical self-organizing maps , 1992, Journal of Mathematical Imaging and Vision.

[27]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[28]  Gerard B. M. Heuvelink,et al.  Space-Time Geostatistics for Geography: A Case Study of Radiation Monitoring Across Parts of Germany , 2010 .

[29]  Robert G. Crane,et al.  Neural Nets: Applications in Geography , 1994 .

[30]  Michael Leitner,et al.  Visualization of Crime Trajectories with Self-Organizing Maps : A Case Study on Evaluating the Impact of Hurricanes on Spatio-Temporal Crime Hotspots , 2011 .

[31]  Mark Gahegan,et al.  GeoVISTA studio: a codeless visual programming environment for geoscientific data analysis and visualization , 2002 .

[32]  Pragya Agarwal,et al.  Introduction: What is a Self‐Organizing Map? , 2008 .

[33]  A. Skupin,et al.  Self-organising maps : applications in geographic information science , 2008 .

[34]  Kate Smith-Miles,et al.  Web page clustering using a self-organizing map of user navigation patterns , 2003, Decis. Support Syst..

[35]  Julian Hagenauer,et al.  Contextual neural gas for spatial clustering and analysis , 2013, Int. J. Geogr. Inf. Sci..

[36]  Sara Irina Fabrikant,et al.  Spatialization Methods: A Cartographic Research Agenda for Non-geographic Information Visualization , 2003 .

[37]  Barry Boots,et al.  Representations of Space and Time , 2004 .

[38]  Jorge Mateu,et al.  Recent advances to model anisotropic space–time data , 2008, Stat. Methods Appl..

[39]  P. A. Blight The Analysis of Time Series: An Introduction , 1991 .

[40]  Juha Vesanto,et al.  SOM-based data visualization methods , 1999, Intell. Data Anal..

[41]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[42]  Michela Bertolotto,et al.  Mining Spatio-Temporal Datasets: Relevance, Challenges and Current Research Directions , 2009 .

[43]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[44]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[45]  Fernando Bação,et al.  The self-organizing map, the Geo-SOM, and relevant variants for geosciences , 2005, Comput. Geosci..

[46]  Gilles Pagès,et al.  Theoretical aspects of the SOM algorithm , 1998, Neurocomputing.

[47]  David J. Martin,et al.  Last of the censuses? The future of small area population data , 2006 .

[48]  Arthur Flexer On the use of self-organizing maps for clustering and visualization , 2001 .

[49]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .