GeSn Heterojunction LEDs on Si Substrates

GeSn on Si light-emitting diodes (LEDs) is investigated for different Sn concentrations up to 4.2% and they are compared with an LED made from pure Ge on Si. The LEDs are realized from in-situ doped pin junctions in GeSn on Ge virtual substrates. The device structures are grown with a special ultra-low temperature molecular beam epitaxy process. All LEDs clearly show direct bandgap electroluminescence emission at room temperature. The light intensity of the compressively strained GeSn LEDs increases with higher Sn concentration. The in-plane strain of the LEDs is determined with reciprocal space mapping. The bandgap energies of the emitting GeSn layer are calculated from the emission spectra.

[1]  M. Oehme,et al.  Room Temperature Direct Band-Gap Emission from an Unstrained Ge P-I-N LED on Si , 2011 .

[2]  Jörg Schulze,et al.  Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy , 2011 .

[3]  R. Soref Silicon Photonics: A Review of Recent Literature , 2010 .

[4]  B. Holländer,et al.  Band engineering and growth of tensile strained Ge/(Si)GeSn heterostructures for tunnel field effect transistors , 2013 .

[5]  Martin Kittler,et al.  Germanium tin: silicon photonics toward the mid-infrared , 2013 .

[6]  J. Werner,et al.  Germanium on Silicon Photodetectors with Broad Spectral Range , 2010 .

[7]  Weijun Fan,et al.  Electronic band structure and effective mass parameters of Ge1-xSnx alloys , 2012 .

[8]  J. Tolle,et al.  Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes , 2011 .

[9]  Richard A. Soref,et al.  Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate , 2013 .

[10]  J. Schulze,et al.  Room-Temperature Electroluminescence From GeSn Light-Emitting Pin Diodes on Si , 2011, IEEE Photonics Technology Letters.

[11]  R Loo,et al.  GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.

[12]  M. Oehme,et al.  Direct bandgap narrowing in Ge LED's on Si substrates. , 2013, Optics express.

[13]  M. Oehme,et al.  Germanium waveguide photodetectors integrated on silicon with MBE , 2008 .

[14]  T. Kamins,et al.  Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy , 2012 .

[15]  Jesse Lu,et al.  Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate. , 2009, Optics express.

[16]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[17]  Jörg Schulze,et al.  Epitaxial growth of highly compressively strained GeSn alloys up to 12.5% Sn , 2013 .

[18]  R. Kotlyar,et al.  Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors , 2013 .

[19]  M. Oehme,et al.  Strain relaxation of metastable SiGe/Si: Investigation with two complementary X-ray techniques , 2012 .

[20]  K. Yu,et al.  Band anticrossing in highly mismatched Sn x Ge 1-x semiconducting alloys , 2008 .

[21]  J. Schulze,et al.  Effect of heavy doping and strain on the electroluminescence of Ge-on-Si light emitting diodes , 2014 .

[22]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.