Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen

Jonathan C. P. Reum1*‡, Simone R. Alin2, Chris J. Harvey1, Nina Bednarsek2, Wiley Evans2,3, Richard A. Feely2, Burke Hales4, Noelle Lucey5, Jeremy T. Mathis2,3, Paul McElhany1, Jan Newton6, and Christopher L. Sabine2 Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA OceanAcidification Research Center, School of Fisheries andOcean Sciences, University of Alaska Fairbanks, 245O’Neill Bldg, Fairbanks, AK 99775, USA College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA Marine Environment and Sustainable Development Unit ENEA, PO Box 224, La Spezia, Italy Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98105, USA *Corresponding author: tel: +1 206 860 3204; fax: +1 206 860 3217; e-mail: jonathan.reum@noaa.gov Present address: Washington Sea Grant, University of Washington, Box 355640, Seattle, WA, USA

[1]  P. Wheeler,et al.  Oxygen production and carbon sequestration in an upwelling coastal margin , 2006 .

[2]  Nicolas Gruber,et al.  Warming up, turning sour, losing breath: ocean biogeochemistry under global change , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  R. Feely,et al.  Spatiotemporal variability and long-term trends of ocean acidification in the California Current System , 2012 .

[4]  R. Feely,et al.  Inorganic carbon dynamics during northern California coastal upwelling , 2010 .

[5]  W. Cai,et al.  Eutrophication induced CO₂-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric PCO₂. , 2012, Environmental science & technology.

[6]  R. Feely,et al.  Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments , 2014, PloS one.

[7]  P. Mcelhany,et al.  Appropriate pCO2 treatments in ocean acidification experiments , 2013 .

[8]  B. Tilbrook,et al.  Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions , 2013, Global change biology.

[9]  Carlos M Duarte,et al.  Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming , 2013, Global change biology.

[10]  L. Kapsenberg,et al.  Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem , 2013 .

[11]  Bryan W. Smith,et al.  Effects of Seawater Acidification on Cell Cycle Control Mechanisms in Strongylocentrotus purpuratus Embryos , 2012, PloS one.

[12]  Kit Yu Karen Chan,et al.  Effects of ocean-acidification-induced morphological changes on larval swimming and feeding , 2011, Journal of Experimental Biology.

[13]  C. Harley,et al.  Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification , 2011, PloS one.

[14]  S. Dupont,et al.  Impact of near-future ocean acidification on echinoderms , 2010, Ecotoxicology.

[15]  C. Harley,et al.  Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail , 2010, Proceedings of the Royal Society B: Biological Sciences.

[16]  David M. Checkley,et al.  Patterns and processes in the California Current System , 2009 .

[17]  Jessica A. Miller,et al.  Resiliency of juvenile walleye pollock to projected levels of ocean acidification , 2012 .

[18]  Barbara M. Hickey,et al.  Oceanography of the U.S. Pacific Northwest Coastal Ocean and estuaries with application to coastal ecology , 2003 .

[19]  Michael D. DeGrandpre,et al.  Aragonite saturation state dynamics in a coastal upwelling zone , 2013 .

[20]  Nancy Knowlton,et al.  Climate change impacts on marine ecosystems. , 2012, Annual review of marine science.

[21]  A. Dickson,et al.  Technical Note: Controlled experimental aquarium system for multi-stressor investigation of carbonate chemistry, oxygen saturation, and temperature , 2013 .

[22]  R. Feely,et al.  The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near‐term ocean acidification effects , 2012 .

[23]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[24]  Impacts of Ocean Acidification SCIENCE POLICY , 2009 .

[25]  B. Gaylord,et al.  Evolutionary change during experimental ocean acidification , 2013, Proceedings of the National Academy of Sciences.

[26]  J. Mathis,et al.  Effects of ocean acidification on hatch size and larval growth of walleye pollock (Theragra chalcogramma) , 2013 .

[27]  B. Gaylord,et al.  The influence of food supply on the response of Olympia oyster larvae to ocean acidification , 2013 .

[28]  M. Koch,et al.  Climate change and ocean acidification effects on seagrasses and marine macroalgae , 2013, Global change biology.

[29]  Michael J. O'Donnell,et al.  Mussel byssus attachment weakened by ocean acidification , 2013 .

[30]  Gernot E. Friederich,et al.  Applications of in situ pH measurements for inorganic carbon calculations , 2011 .

[31]  T. Wernberg,et al.  A decade of climate change experiments on marine organisms: procedures, patterns and problems , 2012 .

[32]  Adina Paytan,et al.  High-Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison , 2011, PloS one.

[33]  Hans Peter Hansen,et al.  Future ocean acidification will be amplified by hypoxia in coastal habitats , 2013 .

[34]  H. Pörtner,et al.  Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems , 2010, Journal of Experimental Biology.

[35]  Integrative Ecophysiology Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes , 2012 .

[36]  H. Page,et al.  Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. , 2012, Ecology.

[37]  Todd R. Martz,et al.  The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO2/pH , 2011 .

[38]  Robert L. Smith,et al.  Carbon and nutrient dynamics during coastal upwelling off Cape Blanco, Oregon , 2000 .

[39]  B. Gaylord,et al.  Functional impacts of ocean acidification in an ecologically critical foundation species , 2011, Journal of Experimental Biology.

[40]  B. Menge,et al.  Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment , 2013, Molecular ecology.

[41]  Jacqueline Boutin,et al.  An update to the Surface Ocean CO2 Atlas (SOCAT version 2) , 2013 .

[42]  G. Plattner,et al.  Rapid Progression of Ocean Acidification in the California Current System , 2012, Science.

[43]  C. Mora,et al.  Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century , 2013, PLoS biology.

[44]  C. Harley,et al.  Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana) , 2011 .

[45]  Richard A. Feely,et al.  The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary , 2010 .

[46]  C. Harley,et al.  Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm , 2009, Proceedings of the National Academy of Sciences.

[47]  Ben P. Harvey,et al.  Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming , 2013, Ecology and evolution.

[48]  C. deAlmeida,et al.  A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources , 2014, PloS one.

[49]  G. Plattner Ocean acidification in the California Current System , 2009 .

[50]  F. Chavez,et al.  Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño–La Niña event , 2002 .

[51]  John P. Dunne,et al.  Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model , 2010 .

[52]  R. Feely,et al.  Evidence for Upwelling of Corrosive "Acidified" Water onto the Continental Shelf , 2008, Science.

[53]  R. Gates,et al.  The Effect of Ocean Acidification on Calcifying Organisms in Marine Ecosystems: An Organism to Ecosystem Perspective , 2010 .

[54]  G. Plattner,et al.  Atmospheric CO2 targets for ocean acidification perturbation experiments , 2010 .

[55]  Feldman,et al.  Biological and chemical response of the equatorial pacific ocean to the 1997-98 El Nino , 1999, Science.

[56]  A. Dickson,et al.  Controlled experimental aquarium system for multi-stressor investigation: carbonate chemistry, oxygen saturation, and temperature , 2013 .

[57]  Taro Takahashi,et al.  Atmospheric CO2 uptake by a coastal upwelling system , 2005 .

[58]  M. Barangé,et al.  Eastern Boundary Upwelling Ecosystems: Integrative and comparative approaches , 2009 .

[59]  M. O'Donnell,et al.  Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas , 2013 .

[60]  C. D. Keeling,et al.  Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium , 2000 .

[61]  F. Mackenzie,et al.  Revisiting four scientific debates in ocean acidification research , 2012 .

[62]  B. Gaylord,et al.  Larval carry‐over effects from ocean acidification persist in the natural environment , 2013, Global change biology.

[63]  Richard A. Feely,et al.  Impacts of ocean acidification on marine fauna and ecosystem processes , 2008 .

[64]  J. Padilla‐Gamiño,et al.  Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus , 2013, Proceedings of the Royal Society B: Biological Sciences.

[65]  Todd R. Martz,et al.  High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest , 2012 .

[66]  J. Salisbury,et al.  Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats. , 2014, Annual review of marine science.

[67]  K. Lotterhos,et al.  Elevated pCO2 increases sperm limitation and risk of polyspermy in the red sea urchin Strongylocentrotus franciscanus , 2011 .

[68]  P. Strutton,et al.  Seasonal cycle of surface ocean pCO2 on the Oregon shelf , 2011 .

[69]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[70]  A. Borges,et al.  5.04 – Carbon Dioxide and Methane Dynamics in Estuaries , 2011 .

[71]  H. Pörtner,et al.  Sensitivities of extant animal taxa to ocean acidification , 2013 .

[72]  K. Short,et al.  A spatial database of wildfires in the United States, 1992-2011 , 2013 .

[73]  J. Padilla‐Gamiño,et al.  Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus , 2013, Global change biology.

[74]  R. Feely,et al.  Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.

[75]  A. Farrell,et al.  Physiology and Climate Change , 2008, Science.

[76]  J. Orr Recent and Future Changes in Ocean Carbonate Chemistry , 2011 .

[77]  P. Boyd Beyond ocean acidification , 2011 .

[78]  B. Gaylord,et al.  The elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects of pCO2 during early life stages , 2013 .

[79]  G. Hofmann,et al.  Development Under Elevated pCO2 Conditions Does Not Affect Lipid Utilization and Protein Content in Early Life-History Stages of the Purple Sea Urchin, Strongylocentrotus purpuratus , 2012, The Biological Bulletin.