CeO2/Pt/Al2O3 catalysts for the WGS reaction: Improving understanding of the Pt-O-Ce-Ox interface as an active site

[1]  M. Willinger,et al.  Hydrogen Interaction with Oxide Supports in the Presence and Absence of Platinum , 2022, The journal of physical chemistry. C, Nanomaterials and interfaces.

[2]  L. Rossi,et al.  Cover Feature: Towards the Effect of Pt 0 /Pt δ+ and Ce 3+ Species at the Surface of CeO 2 Crystals: Understanding the Nature of the Interactions under CO Oxidation Conditions (5/2021) , 2021 .

[3]  Joshua L. Vincent,et al.  Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction , 2021, Nature Communications.

[4]  D. Zanchet,et al.  Effect of the Pt Precursor and Loading on the Structural Parameters and Catalytic Properties of Pt/Al2O3 , 2019, ChemCatChem.

[5]  J. Grunwaldt,et al.  Tuning the Pt/CeO2 Interface by in Situ Variation of the Pt Particle Size , 2018 .

[6]  Andreas Heyden,et al.  Identifying Active Sites of the Water-Gas Shift Reaction over Titania Supported Platinum Catalysts under Uncertainty , 2017, 1710.03672.

[7]  G. Madras,et al.  Zinc and platinum co-doped ceria for WGS and CO oxidation , 2017 .

[8]  S. Ivanova,et al.  Deep insight into Zr/Fe combination for successful Pt/CeO2/Al2O3 WGS catalyst doping , 2017 .

[9]  D. Zanchet,et al.  The Structure of the Cu–CuO Sites Determines the Catalytic Activity of Cu Nanoparticles , 2017 .

[10]  O. Mathon,et al.  Complex interplay of structural and surface properties of ceria on platinum supported catalyst under water gas shift reaction , 2016 .

[11]  Konstantin M. Neyman,et al.  Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? , 2016, Physical chemistry chemical physics : PCCP.

[12]  R. Adzic,et al.  Nanoparticle size evaluation of catalysts by EXAFS: Advantages and limitations , 2016 .

[13]  Weiguo Song,et al.  Strong Local Coordination Structure Effects on Subnanometer PtOx Clusters over CeO2 Nanowires Probed by Low-Temperature CO Oxidation , 2015 .

[14]  J. Silvestre-Albero,et al.  Influence of the metal precursor on the catalytic behavior of Pt/ceria catalysts in the preferential oxidation of CO in the presence of H₂ (PROX). , 2015, Journal of colloid and interface science.

[15]  R. Bal,et al.  Pt nanoparticles with tuneable size supported on nanocrystalline ceria for the low temperature water-gas-shift (WGS) reaction , 2014 .

[16]  Jiqing Lu,et al.  Oxygen vacancy promoted CO oxidation over Pt/CeO 2 catalysts: A reaction at Pt-CeO 2 interface , 2014 .

[17]  S. C. Ammal,et al.  Water–Gas Shift Catalysis at Corner Atoms of Pt Clusters in Contact with a TiO2 (110) Support Surface , 2014 .

[18]  D. Stacchiola,et al.  Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts , 2014 .

[19]  S. C. Ammal,et al.  On the Importance of the Associative Carboxyl Mechanism for the Water-Gas Shift Reaction at Pt/CeO2 Interface Sites , 2014 .

[20]  S. C. Ammal,et al.  On the importance of metal–oxide interface sites for the water–gas shift reaction over Pt/CeO2 catalysts , 2014 .

[21]  K. Polychronopoulou,et al.  Water–Gas Shift Reaction on Pt/Ce1–xTixO2−δ: The Effect of Ce/Ti Ratio , 2013 .

[22]  D. Zanchet,et al.  Interplay between particle size, composition, and structure of MgAl2O4-supported Co-Cu catalysts and their influence on carbon accumulation during steam reforming of ethanol , 2013 .

[23]  G. Somorjai,et al.  Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. , 2013, Journal of the American Chemical Society.

[24]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[25]  Ping Liu,et al.  A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. , 2012, Journal of the American Chemical Society.

[26]  V. Matolín,et al.  Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts , 2012 .

[27]  G. Henkelman,et al.  Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation , 2011 .

[28]  Konstantin M. Neyman,et al.  Effects of deposited Pt particles on the reducibility of CeO2(111). , 2011, Physical chemistry chemical physics : PCCP.

[29]  A. M. Efstathiou,et al.  Effects of Reaction Temperature and Support Composition on the Mechanism of Water–Gas Shift Reaction over Supported-Pt Catalysts , 2011 .

[30]  A. M. Efstathiou,et al.  “Redox” vs “associative formate with –OH group regeneration” WGS reaction mechanism on Pt/CeO2: Effect of platinum particle size , 2011 .

[31]  Kazuhiro Takanabe,et al.  Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. , 2011, Journal of the American Chemical Society.

[32]  D. Zanchet,et al.  Designing Pt nanoparticles supported on CeO2-Al2O3: Synthesis, characterization and catalytic properties in the steam reforming and partial oxidation of methane , 2010 .

[33]  Konstantin M. Neyman,et al.  Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale , 2010 .

[34]  C. Apesteguía,et al.  Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts , 2010 .

[35]  Jing Zhou,et al.  Growth of Pt Nanoparticles on Reducible CeO2(111) Thin Films: Effect of Nanostructures and Redox Properties of Ceria , 2010 .

[36]  J. Bokhoven,et al.  In situ XAS probes partially oxidized platinum generating high activity for CO oxidation , 2009 .

[37]  Manuel Pérez,et al.  Water-gas shift reaction on a highly active inverse CeOx/Cu111 catalyst: unique role of ceria nanoparticles. , 2009, Angewandte Chemie.

[38]  M. Hatanaka,et al.  Suppression of Noble Metal Sintering Based on the Support Anchoring Effect and its Application in Automotive Three-Way Catalysis , 2009 .

[39]  H. Weiss,et al.  CO Oxidation on a CeOx/Pt(111) Inverse Model Catalyst Surface: Catalytic Promotion and Tuning of Kinetic Phase Diagrams , 2008 .

[40]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[41]  K. Hermansson,et al.  Structural and electronic properties of NM-doped ceria (NM = Pt, Rh): a first-principles study , 2008 .

[42]  Robert J. Farrauto,et al.  Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria , 2007 .

[43]  Ping Liu,et al.  Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. , 2007, Angewandte Chemie.

[44]  Takashi Minami,et al.  Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction , 2006 .

[45]  R. Prins,et al.  Analysis of in situ EXAFS data of supported metal catalysts using the third and fourth cumulant. , 2006, Physical chemistry chemical physics : PCCP.

[46]  C. Louis,et al.  The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts , 2006 .

[47]  J. Silvestre-Albero,et al.  Effect of the presence of chlorine in bimetallic PtZn/CeO2 catalysts for the vapor-phase hydrogenation of crotonaldehyde , 2006 .

[48]  A. M. Efstathiou,et al.  Regeneration of thermally aged Pt-Rh/CexZr1−xO2-Al2O3 model three-way catalysts by oxychlorination treatments , 2006 .

[49]  M. Daturi,et al.  FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles , 2005 .

[50]  A. M. Efstathiou,et al.  Influence of oxychlorination treatments on the redox and oxygen storage and release properties of thermally aged Pd-Rh/CexZr1−xO2/Al2O3 model three-way catalysts , 2005 .

[51]  Fabio B. Noronha,et al.  The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane , 2005 .

[52]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[53]  R. Gorte,et al.  Studies of the water-gas-shift reaction with ceria-supported precious metals , 2005 .

[54]  J. Bueno,et al.  Surface Behavior of Alumina-Supported Pt Catalysts Modified with Cerium as Revealed by X-ray Diffraction, X-ray Photoelectron Spectroscopy, and Fourier Transform Infrared Spectroscopy of CO Adsorption , 2004 .

[55]  G. Jacobs,et al.  Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal , 2004 .

[56]  J. Bueno,et al.  Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts , 2003 .

[57]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[58]  M. S. Hegde,et al.  Ionic Dispersion of Pt over $CeO_2$ by the Combustion Method: Structural Investigation by XRD, TEM, XPS, and EXAFS , 2003 .

[59]  Chunshan Song,et al.  Fuel processing for low-temperature and high-temperature fuel cells , 2002 .

[60]  F. Gracia,et al.  Kinetics, FTIR, and Controlled Atmosphere EXAFS Study of the Effect of Chlorine on Pt-Supported Catalysts during Oxidation Reactions , 2002 .

[61]  J. M. Zalc,et al.  Are Noble Metal-Based Water–Gas Shift Catalysts Practical for Automotive Fuel Processing? , 2002 .

[62]  J. Hanson,et al.  Experimental and theoretical studies on the reaction of H(2) with NiO: role of O vacancies and mechanism for oxide reduction. , 2002, Journal of the American Chemical Society.

[63]  X. Bokhimi,et al.  Synthesis, characterization and catalytic properties of Pt/CeO2–Al2O3 and Pt/La2O3–Al2O3 sol–gel derived catalysts , 2001 .

[64]  D. Goodman,et al.  Structure-reactivity correlations for oxide-supported metal catalysts: new perspectives from STM , 2000 .

[65]  Maria Flytzani-Stephanopoulos,et al.  Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts , 2000 .

[66]  V. Perrichon,et al.  Magnetic study of the interaction of hydrogen with a Pt/CeO2-Al2O3 catalyst : influence of the presence of chlorine , 1999 .

[67]  A. Jentys,et al.  Estimation of mean size and shape of small metal particles by EXAFS , 1999 .

[68]  C. Yeh,et al.  Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina , 1996 .

[69]  Jeffrey T. Miller,et al.  On the Relation Between Particle Morphology, Structure of the Metal-Support Interface and Catalytic Properties of Pt/gamma-Al2O3. , 1996 .

[70]  J. Lavalley,et al.  Surface-Chlorinated Ceria and Chlorine-Containing Reduced Pd/CeO2 Catalysts. A FTIR Study , 1996 .

[71]  J. Yates,et al.  Terrace width effect on adsorbate vibrations: a comparison of Pt(335) and Pt(112) for chemisorption of CO , 1995 .

[72]  D. W. Daniel Infrared studies of carbon monoxide and carbon dioxide adsorption on platinum/ceria: the characterization of active sites , 1988 .

[73]  F. Normand,et al.  Oxidation state of cerium in cerium-based catalysts investigated by spectroscopic probes , 1988 .

[74]  K. Heinemann,et al.  In-situ TEM evidence of lattice expansion of very small supported palladium particles , 1985 .

[75]  R. Herz,et al.  Transient oxidation and reduction of alumina-supported platinum , 1984 .

[76]  G. Brodén,et al.  The adsorption of potassium on Pt(111) and its effect on oxygen adsorption , 1982 .

[77]  V. Ponec,et al.  Geometric and ligand effects in the infrared spectra of adsorbed carbon monoxide , 1982 .

[78]  J. L. Carter,et al.  EXCHANGE OF DEUTERIUM WITH THE HYDROXYL GROUPS OF ALUMINA , 1965 .