Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum.

Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (grAl) in the superconducting regime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/□ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from grAl with a room temperature resistivity of 4×10^{3}  μΩ cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Q_{i}=10^{5} in the single photon regime, and we demonstrate that nonequilibrium quasiparticles (QPs) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20  s. The current level of coherence of grAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of nonequilibrium QPs.

[1]  Thomas M Stace,et al.  Passive On-Chip Superconducting Circulator Using a Ring of Tunnel Junctions. , 2017, Physical review letters.

[2]  D. Rosenberg,et al.  Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators , 2017, 1709.10015.

[3]  D. DiVincenzo,et al.  Design of an inductively shunted transmon qubit with tunable transverse and longitudinal coupling , 2017, 1804.09777.

[4]  D. Schuster,et al.  Realization of a Λ System with Metastable States of a Capacitively Shunted Fluxonium. , 2017, Physical review letters.

[5]  M. Weides,et al.  An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts , 2017, 1706.06424.

[6]  Feigelman Mikhail,et al.  Microwave Properties of Superconductors Close to the Superconductor-Insulator Transition. , 2017, Physical review letters.

[7]  G. Kirchmair,et al.  Characterization of low loss microstrip resonators as a building block for circuit QED in a 3D waveguide , 2017, 1706.04169.

[8]  V. Manucharyan,et al.  Demonstration of Protection of a Superconducting Qubit from Energy Decay. , 2017, Physical review letters.

[9]  John Clarke,et al.  Suppressing relaxation in superconducting qubits by quasiparticle pumping , 2016, Science.

[10]  Mazyar Mirrahimi,et al.  Degeneracy-Preserving Quantum Nondemolition Measurement of Parity-Type Observables for Cat Qubits. , 2016, Physical review letters.

[11]  S. Zanker,et al.  Electronic Decoherence of Two-Level Systems in a Josephson Junction , 2016, 1609.06173.

[12]  Luke D. Burkhart,et al.  Normal-metal quasiparticle traps for superconducting qubits , 2016, 1606.04591.

[13]  A. Blais,et al.  Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving , 2016, 1605.09408.

[14]  G. Deutscher,et al.  Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins , 2016 .

[15]  L. Frunzio,et al.  Simultaneous Monitoring of Fluxonium Qubits in a Waveguide , 2016, Physical Review Applied.

[16]  Y. Nazarov,et al.  Theoretical Model to Explain Excess of Quasiparticles in Superconductors. , 2016, Physical review letters.

[17]  C. Marcus,et al.  Milestones toward Majorana-based quantum computing , 2015, 1511.05153.

[18]  L. DiCarlo,et al.  High Kinetic Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field , 2015, 1511.01760.

[19]  G. Hilton,et al.  Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing. , 2015, Applied physics letters.

[20]  P. Bertet,et al.  Coherent manipulation of Andreev states in superconducting atomic contacts , 2015, Science.

[21]  Luigi Frunzio,et al.  Surface participation and dielectric loss in superconducting qubits , 2015, 1509.01854.

[22]  Ivan M Khaymovich,et al.  Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors , 2015, Nature Communications.

[23]  C. Naud,et al.  Kerr coefficients of plasma resonances in Josephson junction chains , 2015, 1505.05845.

[24]  M. Castellano,et al.  Energy resolution and efficiency of phonon-mediated Kinetic Inductance Detectors for light detection , 2015, 1505.04666.

[25]  Wenyuan Zhang,et al.  Spectroscopic Evidence of the Aharonov-Casher Effect in a Cooper Pair Box. , 2015, Physical review letters.

[26]  C. M. Marcus,et al.  Parity lifetime of bound states in a proximitized semiconductor nanowire , 2015, Nature Physics.

[27]  A. D’Addabbo Applications of Kinetic Inductance Detectors to Astronomy and Particle Physics , 2014 .

[28]  M. Weides,et al.  Aluminium-oxide wires for superconducting high kinetic inductance circuits , 2014 .

[29]  Yvonne Y Gao,et al.  Measurement and control of quasiparticle dynamics in a superconducting qubit , 2014, Nature Communications.

[30]  A. Bezryadin,et al.  Formation of Quantum Phase Slip Pairs in Superconducting Nanowires , 2014, 1406.5128.

[31]  Yvonne Y Gao,et al.  Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations. , 2014, Physical review letters.

[32]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[33]  Leif Grönberg,et al.  Kinetic inductance magnetometer , 2014, Nature Communications.

[34]  R Patil Vijay,et al.  Single-quasiparticle trapping in aluminum nanobridge Josephson junctions. , 2013, Physical review letters.

[35]  J. Pekola,et al.  Excitation of single quasiparticles in a small superconducting Al island connected to normal-metal leads by tunnel junctions. , 2013, Physical review letters.

[36]  T M Klapwijk,et al.  Evidence of a nonequilibrium distribution of quasiparticles in the microwave response of a superconducting aluminum resonator. , 2013, Physical review letters.

[37]  N. Llombart,et al.  Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime , 2013, 1305.4281.

[38]  John Preskill,et al.  Protected gates for superconducting qubits , 2013, 1302.4122.

[39]  M. Devoret,et al.  Microwave characterization of Josephson junction arrays: implementing a low loss superinductance. , 2012, Physical review letters.

[40]  A. Kitaev,et al.  Quantum superinductor with tunable nonlinearity. , 2012, Physical review letters.

[41]  L. Ioffe,et al.  Coherent quantum phase slip , 2012, Nature.

[42]  S. R. Golwala,et al.  Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors , 2012, 1203.4549.

[43]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[44]  Erik Lucero,et al.  Surface loss simulations of superconducting coplanar waveguide resonators , 2011, 1107.4698.

[45]  T M Klapwijk,et al.  Number fluctuations of sparse quasiparticles in a superconductor. , 2011, Physical review letters.

[46]  K. Murch,et al.  Single crystal silicon capacitors with low microwave loss in the single photon regime , 2011, 1102.2917.

[47]  M. Steffen,et al.  Low Loss Superconducting Titanium Nitride Coplanar Waveguide Resonators , 2010, 1007.5096.

[48]  R. Barends,et al.  Reduced frequency noise in superconducting resonators , 2010, 1005.5394.

[49]  A. Monfardini,et al.  High-speed phonon imaging using frequency-multiplexed kinetic inductance detectors , 2010, 1004.5066.

[50]  Jonas Zmuidzinas,et al.  Titanium Nitride Films for Ultrasensitive Microresonator Detectors , 2010, 1003.5584.

[51]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[52]  C. Hoffmann,et al.  In situ measurement of the permittivity of helium using microwave NbN resonators , 2008, 0809.4919.

[53]  L. Ioffe,et al.  Superconducting nanocircuits for topologically protected qubits , 2008, 0802.2295.

[54]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[55]  J. Martinis,et al.  Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. , 2003, Physical review letters.

[56]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[57]  H. A. Schwettman,et al.  The surface impedance of superconductors and normal conductors: The Mattis-Bardeen theory , 1991 .

[58]  Vladimir S. Ilchenko,et al.  Experimental observation of fundamental microwave absorption in high-quality dielectric crystals , 1987 .

[59]  Cheng-Chung Chi,et al.  Quasiparticle and phonon lifetimes in superconductors , 1976 .

[60]  B. Halperin,et al.  Nonlinear Phonon Propagation in Fused Silica below 1 K , 1973 .

[61]  W. Arnold,et al.  Saturation of the ultrasonic absorption in vitreous silica at low temperatures , 1972 .

[62]  R. W. Cohen,et al.  Superconductivity in Granular Aluminum Films , 1968 .

[63]  B. N. Taylor,et al.  Measurement of Recombination Lifetimes in Superconductors , 1967 .

[64]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[65]  W. Buckel,et al.  Einfluß der Kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und die Supraleitung für verschiedene Metalle , 1954 .

[66]  B. Plourde,et al.  Supplementary information to the manuscript “ Trapping a single vortex and reducing quasiparticles in a superconducting resonator ” , 2014 .

[67]  W. Marsden I and J , 2012 .

[68]  Jiansong Gao,et al.  The physics of superconducting microwave resonators , 2008 .

[69]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[70]  G. Deutscher,et al.  Transition to zero dimensionality in granular aluminum superconducting films , 1973 .

[71]  I. Miyazaki,et al.  AND T , 2022 .